

    
      
          
            
  
MSC 2.0


Tutorial



	Tutorial







Contents



	1. Introduction
	1.1. Introduction

	1.2. Structure

	1.3. Notation





	2. Namespaces
	2.1. The Namespace

	2.2. Using Namespaces

	2.3. Best Practice





	3. Variables
	3.1. Types

	3.2. Built-in Types

	3.3. Literals

	3.4. Qualifiers

	3.5. 3.4 Usage

	3.6. Null





	4. Lists
	4.1. Constructors

	4.2. Indexing

	4.3. Methods

	4.4. Namespace:

	4.5. For Loops

	4.6. Player Indexing





	5. Expressions
	5.1. The Expression

	5.2. Execution Order

	5.3. Short Circuit

	5.4. Syntax
	5.4.1. Syntax

	5.4.2. Define

	5.4.3. Var

	5.4.4. String Formatting

	5.4.5. Expression









	6. Scripts
	6.1. Script Operators
	6.1.1. Script Operators

	6.1.2. Command Operators

	6.1.3. Branching Operators

	6.1.4. Control Operators

	6.1.5. Variable Operators

	6.1.6. Chat Operators





	6.2. Script Anatomy
	6.2.1. Anatomy of Scripts

	6.2.2. Script Types

	6.2.3. Lines

	6.2.4. Parameters





	6.3. Script Commands
	6.3.1. Commands

	6.3.2. Action

	6.3.3. Type





	6.4. Paste.minr.org
	6.4.1. Paste.minr.org









	7. Functions
	7.1. The Function
	7.1.1. The Function

	7.1.2. Parameters

	7.1.3. Return Type





	7.2. Function Syntax
	7.2.1. Syntax

	7.2.2. Definition

	7.2.3. Function Calls









	8. User defined Types
	8.1. User defined Types

	8.2. Fields

	8.3. Methods

	8.4. This keyword

	8.5. Constructors





	9. Appendix
	9.1. Built-in Namespaces
	9.1.1. Built-in Namespaces

	9.1.2. system

	9.1.3. math

	9.1.4. util

	9.1.5. format

	9.1.6. timer





	9.2. Built-in Types
	9.2.1. Built-in Types

	9.2.2. String

	9.2.3. Constructors

	9.2.4. Operators

	9.2.5. Int & Long

	9.2.6. Float & Double

	9.2.7. Boolean

	9.2.8. Player

	9.2.9. Entity

	9.2.10. Block

	9.2.11. Item

	9.2.12. Spatial Types

	9.2.13. Location

	9.2.14. BlockLocation

	9.2.15. Position

	9.2.16. Vector3, BlockVector3, Vector2 and BlockVector2

	9.2.17. Region





	9.3. Syntax
	9.3.1. Syntax

	9.3.2. Define

	9.3.3. Var

	9.3.4. String Formatting

	9.3.5. Expression

	9.3.6. Time





	9.4. Commands
	9.4.1. Namespace

	9.4.2. Variable

	9.4.3. Function

	9.4.4. User Types

	9.4.5. Fields

	9.4.6. Methods

	9.4.7. Constructors

	9.4.8. Script





	9.5. Scripts
	9.5.1. Scripts

	9.5.2. Script Actions

	9.5.3. Script Types

	9.5.4. Script Operators















Changelog/Version History



	Version History/Changelog

	2.4.7

	2.4.6

	2.4.5

	2.4.4

	2.4.3

	2.4.2

	2.4.1

	2.4.0

	2.3.4

	2.3.3

	2.3.2

	2.3.0

	2.2.2

	2.2.1

	2.2.0

	2.1.5

	2.1.4

	2.1.3

	2.1.2

	2.1.1

	2.1.0

	2.0







Footnotes



            

          

      

      

    

  

    
      
          
            
  
Tutorial

This tutorial is designed to give players who are new to scripting a brief introduction to the MSC 2.0 language. We’ll cover the basics on scripting and provide the most important points to remember without overcomplicating and going into too much detail. Once you’re done with this tutorial, you should know how to create basic scripts such as dialogues and prompts, and have a general idea of how MSC 2.0 works and what you can do with it.


Tutorial Contents


	Tutorial


	What is MSC?


	Script types


	Script operators


	Script actions


	Paste.minr.org


	Creating a dialogue script


	More advanced dialogue


	Variables


	Qualifiers


	Writing a script that uses local variables


	Double curly braces


	Namespaces


	Branching Operators


	Writing a simple counting script


	Writing a simple script to check if the player already clicked a block


	Chat Operators


	Creating an answer prompt










What is MSC?

MSC is the scripting language developed for Minr. It is extremely powerful and often simpler than command blocks. Over the years, its use in maps and on the server has grown enormously, allowing for anyone to learn the language.

Every script consists of script lines, which are the actual content of a script. A script is executed from top to bottom, waiting, delaying and executing commands as necessary.



Script types

Before we create our first script, an introduction of the types of scripts you can create are necessary.

There are 6 types of scripts - more detailed information can be found here. A basic rundown of the types is below:

interact - placing an interact script on a block causes the script to be triggered upon the player clicking the block (e.g., stone, button, or any other block). The interact script type is often used for chat answer submissions, submit buttons, dialogue, and much more.

walk - placing a walk script on a block causes the script to be triggered when the player walks over the block containing the script. If the script was bound to a block that is now removed, the script still triggers when the player is in the space just above the block. The walk script type is often used for traps, story elements, resets, and much more.

ground - placing a ground script on a block causes the script to be triggered only when the player walks over the block. The script triggers when the player is on the block, and not while jumping on it, or if the block is air. The ground script type can be used for crumbling pathways and other effects that require the player to stand on the block.

entity - placing an entity script on an entity (e.g. armor stand, mob, etc.) causes the script to trigger when a player clicks the entity. The script gets removed once the entity dies or despawns. The entity script is often used for dialogue.

area - area scripts can be placed on WorldGuard regions. The script gets triggered once when a player enters the region.

function - We will get into this later as it is more complex for those who have not coded before. To create content in a function, the function type is used. A function is always explicitly called from a script or other function. When adding script lines to a function, the function has to be defined using the function command.



Script operators

Every line within a script contains exactly one operator. The operator gives meaning to the line, because it determines what has to be done with the arguments. There are operators to execute commands, control the script flow and manipulate variables. An overview is located here and a full summary is located here: here

There are a good amount of operators, so we’ll introduce you to the most used ones first.

@command <command>

Execute a command as the player. Can only execute the commands the player can also execute. For example, the script

@command /tp 0 100 90





will not work for non staff members. However, if a staff member were to run the command, it would work, as staff members have access to /tp.

The following script:

@command /spawn





will work for all players, as all players are able to do /spawn

@bypass <command>

Execute a command as the player in an elevated position. Allows the execution of most admin commands. This is very useful for commands such as /tp or /setblock, which are only available to staff. For example, if we write the same script as before with bypass, it works for all players and tps them to the coordinates 0 100 90:

@bypass /tp 0 100 90





@player <message>

Displays the given message to the player in the chat. For example, if I were to create the following script:

@player Hello!





and then click it, I would be displayed

Hello!





in my Minecraft chat.



Script actions

Here, we’ll show how you can create, delete, and modify a script on the server. More details are located here.

/script create <@operator> <script>

Adds a line to the end of the script. For example, if I were to run this on the server and place it on a block by clicking the block:

/script create interact @player hi!





The block would have the following interact script attached to it:

@player hi!





You can also add a script line with /script create <line> <@operator> <script> to add the script on the given line number instead.

/script view <type>

View the lines of the script in chat. For example, if I were to view the script I placed on the block in the previous paragraph, I run this command and then click the block I placed it on:

/script view interact





And in my chat, I would see

@player hi!





/script remove <type>

Removes the script with the given type. For example, if I were to remove the script that we created earlier, I would run this command and click the block I placed it on:

/script remove interact





and the block would no longer have an interact script attached to it.



Paste.minr.org

Minecraft has a pretty terrible way of inputting scripts. There’s the option through chat,
but that gets unreadable fast, and does not support multiple lines. We could use books,
but they have limited horizontal space, which means most lines would wrap. Signs are
no option either. There must be a better way to type scripts, right?

MSC 2 supports paste.minr.org[#1], which is an online coding pastebin based on Hastebin. You can write text, press
save, and a link will be generated that you can share with everyone. MSC 2.0 takes this
raw text line by line, and converts it to a script.

Script can be imported from paste.minr.org using:

/script import ... <id>





and exported using

/script export ...





When you save your piece of text on paste.minr.org, your URL will be appended by an identifier
(a few random characters). You should use this identifier as the id when importing.

Exporting will upload the current script to paste.minr.org, after which you can clone and edit
the script, and import the edited script.

Paste.minr.org uses automatically detected programming languages, resulting in MSC lines
being picked up as some programming language. Paste.minr.org will automatically include
the programming language’s extension. Whether you include the extension, or even the
entire URL, or not, it will work regardless.

Example

[image: _images/paste-1.PNG]
Figure 5.1: Write a script in paste.minr.org

[image: _images/hastebin2.PNG]
Figure 5.2: Save the script.

[image: _images/paste-3.PNG]
Figure 5.3: Find the identifier.

/script import interact fomomokumo





Figure 5.4: Run the import command, and press the block. That’s it!

Exporting a script is as easy as running

/script export interact





and clicking the block, after which a link to the paste.minr.org will be generated. To edit this
script, you can press the edit button:

[image: _images/hastebin4.PNG]
Figure 5.5: Click the edit button, and start editing. Then follow the instructions above
to import the script again.



Creating a dialogue script

And now finally, we’re ready to start creating our first script! We will create a dialogue script here. Dialogues are used when you want the player to be shown some text in chat, for example a dialogue with an NPC.

For example, if we want our armor stand to say the message “John: Hi!” in chat, we will run this command and click the armor stand to add the script onto it:

/script create entity @player John: Hello!





And whenever you click, the armor stand, you should see the following in chat:

John: Hello!





Chat messages are colored and styled by putting their color code in front of them. You can see https://www.digminecraft.com/lists/color_list_pc.php for a simple list of color codes. For example, if I want the previous script to be in red, I’d create it like this:

/script create entity @player &cJohn: Hello!







More advanced dialogue

Two control operators that are frequently used with chat scripts are @cooldown and @delay.

@delay <time>

Delays the rest of the executed script by the specified time. This is useful so that if you have an NPC saying a lot of lines, you don’t get all the lines spammed to you all at once.

@cooldown <time>

The specified time needs to pass between script executions. This is useful for long dialogues. For example, if you have a dialogue that takes 30 seconds to complete, you don’t want the player to be able to run the dialogue again while they’re still in the middle of their previous dialogue! Thus, you’d set the cooldown to be 30 seconds or longer.

If we have the following script and we trigger it, the player must wait 10 seconds before they can trigger the script again. “John: Hello!” displays in chat, and then after 5 seconds pass, we see “John: Bye!”.

@cooldown 10s
/script create entity @player &4&lJohn: &dHello!
@delay 5s
/script create entity @player &4&lJohn: &dBye!







Variables

A variable is a way of storing information. The Type of the variable determines in what format the value is stored and what operations can be performed on the value.

Whenever a variable is defined, the Type is always the word immediately preceding the variable’s name. For example, the variable name defined as:

@define String name





has the type String

You can perform operations of variables with @var. For example:

@define String name = "Ricky"
@var name  = name + "boy"
@player {{name}}





will display

Rickyboy





MSC 2.0 comes with a set of predefined types which can be used at any time from any namespace. You can view the list here



Qualifiers

When defining a new type or namespace, sometimes it is useful to have variables that are player relative, or a variable that has a constant value. There are two qualifiers:

relative

A variable that is player-bound. This is MSC 2’s way of defining per-player variables, rather than shared variables. For example, if you have a map where a player needs to collect a certain number of items and you store the number of items they collected in a variable, you want that to be stored per player - you don’t want every player to have the same item count!

final

A constant variable. Once initialized cannot be changed



Writing a script that uses local variables

You can define a local variable like so:

@define <Type> <name> [= expression]





For example, the following would print Hello World! to the player when they trigger the script.

@define String message = "Hello World!"
@player {{message}}





Above, String is the type of the variable, message is the variable name and “Hello World!” is the string stored in the message variable.



Double curly braces

You can use double curly braces {{ }} to display a variable’s contents inside it. As shown above, you can do:

@define String message = "Hello World!"
@player {{message}}





to display the following to the player:

Hello World!





You can do math in them as well (among other things)!

@player {{5 + 5}}





will display the following to the player:

10







Namespaces

A namespace consists of variables, functions, and types. A user can define a namespace using a unique name. You can add a namespace to your script by adding @using <namespace_name> to line 1 of your script.

If a namespace is undefined (you do not include a @using operator in the script), the local namespace will be used - the local namespace contains variables that are not persistent. The local namespace is deleted when the script terminates. Thus, in order to have variables that you can keep throughout different scripts, you need to define them in a namespace.

Namespaces can be created with /namespace define <name>. For example, to create a namespace called learnmsc:

/namespace define learnmsc





You can add variables to a namespace with /variable define <namespace> [qualifier] <Type> <name> [= expression].

You can set a variable’s value once it has already been defined with /variable set <namespace> <name> = <expression>.

A more concrete example is below:

I create a namespace learnmsc:

/namespace define learnmsc





I define two variables: message (type String) and number (type Int):

/variable define learnmsc String message = "Hello"
/variable define learnmsc Int number = 1





I use it in a script:

@using learnmsc
@player {{message}}
@var number = number + number
@player {{number}}





Hello
2







Branching Operators

Sometimes a script needs to conditionally execute a part of the script. For this reason
we have branching operators, which provide ways to cause different execution flows
using variables. The branching operators can be nested, causing more and more possible
execution paths. Be warned, as increasing the amount of execution paths greatly
complexifies the script.

@if <Boolean expression>

Takes an expression that evaluates to a Boolean. If the Boolean is true, the following
section is executed, if it is false, the section is skipped until reaching an @elseif, @else
or @fi of the same level.

@else

Executes the following section if the preceding @if and @elseif operators of the same
level were false.

@elseif<Boolean expression>

Executes the following section if the preceding @if and @elseif operators of the same
level were false, and the expression of this @elseif evaluates to true.

@fi

Ends the conditional section. Any @if, @else or @elseif operators of the same level will
no longer apply after this operator.

@return
Stops the execution of the current script or function, and optionally returns a value.

Because the branching operators can be nested, the script maintains an ’if level’ to
keep track of which @if has impact on which @else and @elseif operators. This level is
demonstrated visually through the use of indentation in both this document and any
script viewings (such as /scripts view).

@if true
    @player 1
    @return
@fi
@player 2





1







Writing a simple counting script

First, I’ll create the namespace learnmsc

/namespace define learnmsc





I define the variable count of type relative Int (remember, relative is a per-player variable!). I set the initial value to 0 since the player starts with clicking the block 0 times.

/variable define relative Int count = 0





I put the following code onto it:

@using learnmsc
@var count = count + 1
@player You clicked this block {{count}} times!





This will send the player the number of times they clicked the block in chat, whenever they click on it.



Writing a simple script to check if the player already clicked a block

First, I’ll create the namespace learnmsc

/namespace define learnmsc





I define the variable clicked of type relative Boolean (remember, relative is a per-player variable!). I set the initial value to False since the player has not clicked the block yet.

/variable define learnmsc relative Boolean clicked = false





I add the following code to a block (for example, an egg head):

@using learnmsc

@if clicked
    @player You already found this egg!
@else
    @player Congrats! You found this egg!
    @var clicked = true
@fi





This script will tell the player “Congrats! You found this egg!” if they have not clicked it before, and then set clicked to True. Thus, the next time they click the egg, clicked will be True, thus the if branch is evaluated, giving the player “You already found this egg!”



Chat Operators

There are two chat operators - @chatscript and @prompt. We will look at @prompt as it is more widely used, but you can see the documentation for chatscript as well: Chat Operators.

@prompt <time> <variable> [message]

Halts the script until the player types something. If time runs out, the script ends here, sending the message the optional message, or ’Prompt expired’ otherwise. Message supports color codes with &.

If the player types something in time, the text the player typed is stored in the passed variable. Therefore, variable has to be of type String.



Creating an answer prompt

Here, we’ll ask the player what color a banana is. We give them 30 seconds to answer - if they go over the time limit, they get “You took too long. Try again!” and the script terminates. The answer, obviously, is yellow, and will tell them “Correct!” if they successfully answer. If they type anything else, they will get “Incorrect!”

You typically want to run the command .equalsIgnoreCase() on your input. That way, if the user answers with “Yellow”, or “YELLOW” (which are both correct!), etc., it will still match with “yellow”, as equalsIgnoreCase compares the characters without regard for capitalization.

@define String user_input

@player What color is a banana?

@prompt 30s user_input You took too long. Try again!
@if user_input.equalsIgnoreCase("yellow")
    @player Correct!
@else
    @player Incorrect.
@fi





Congrats on getting through the tutorial! More coming soon.



Footnotes



[#1]
https://paste.minr.org/





            

          

      

      

    

  

    
      
          
            
  
1. Introduction

A short introduction on the document and structure, including notation and practices
maintained within the document.


1.1. Introduction

Previous versions of the scripting language (Scriptblock, MSC 1) have shown that scripts
are extremely powerful and often simpler than command blocks. However, these versions
also had shortcomings. Scriptblock ended up being outdated, causing all interact scripts
to be fired twice upon interact, and some operators such as @delay and @cooldown could
break by a player logging out. To circumvent this, we developed a Minr-specific version,
Minr Scripts (MSC), which initially aimed to solve these issues. Since the codebase was
ours, we were able to add additional operators, features and more, which made scripting
even more powerful.

With this expansion of features the correct usage, functionality, shortcomings, bugs, and
dangers with implementing became obscured, causing unwanted behaviour in scripts and
confusion among scripters.

Additionally, variables were all globally stored, dynamically typed, and rather verbose
to manipulate (each operation takes one line). Scripts were unable to be reused, nor was
it easy to mass-edit a script, requiring third-party mods.

MSC 2 attempts to solve these shortcomings in variables and scripts by the addition
of typed variables, namespaces, functions, hastebin-based import and export of scripts,
and the addition of expressions in scripts, allowing for easier manipulation of variables.

This document attempts to clarify the features, shortcomings and dangers of MSC 2,
combined with good practice and examples of use cases.



1.2. Structure

MSC 2 contains a lot of new features. Additionally, to remain compatible with major
features and standards from MSC 1, many features of MSC 1 have been leveraged,
which means that the core concept of creating and editing scripts remains the same.

Each feature will be extensively handled in its own chapter, with the chapters slowly
building up the required knowledge.

For your first read it may be best to read from the top to bottom, because the document
is structured keeping this in mind. For future reference, the Appendix can be used,
which contains a summary of all tables, commands, functions, script operators, types,
and more features present in the current implementation of MSC 2. If you are unsure
how a specific element works, you can always refer back to the table of contents and
search it in the main document.



1.3. Notation

In examples and command definitions, arguments contain brackets or less than and
greater than signs. Arguments in brackets ([ ]) can be optionally defined. Arguments
between the less than and greater than signs (<>) are required.

For example:

/variable define <namespace> [qualifier [...]] <Type> <name> [= expression]





Requires the namespace, Type and name arguments, and optionally provides the qualifier
and = expression arguments. Any amount of qualifiers can be passed, indicated by the
[…].

Scripts are represented as:

@player Hello
@bypass /rocket
@if true
    @player True
@else
    @player False





The result of a script is represented as:

Hello
True







Footnotes



            

          

      

      

    

  

    
      
          
            
  
2. Namespaces

Namespaces are a way of separating project-specific variables, functions and types. In
previous versions, variables tended to cause collisions: frequently used names such as x
or y could not have different values in different scripts. Namespaces allow encapsulation
to prevent these collisions. A variable named x can coexist within multiple namespaces at
any given time, without causing a collision. Generally a namespace would encapsulate
a given project, a module within a project, or a logical module that can be reused in
different projects (such as the math namespace).


2.1. The Namespace

A namespace consists of variables, functions and types. A user can define a namespace
using a unique name. Within the namespace, variables can be defined to make them
usable within the namespace. These are the persistent variables and will be stored to
file.

Before being able to use a variable, function or type, they should be defined as element
of a namespace. The definition of the variable requires a type. Persistent variables have
to be defined in advance so that the compiler knows where to look and what type they
are. See Variables for more details.

When using variables, functions or types in a script, the script should know what namespace the variable, function or type is in. If the namespace is undefined, it automatically
defaults to the local namespace which contains variables that are not persistent. All
variables within the local namespace should therefore be defined locally (that is, within
the script). If using an undefined variable, the compiler will throw an error.

The local namespace is also present when using a specified namespace, and always takes
precedence over the specified namespace. Any variables defined within the local namespace will shadow - that is overrule - the variable in the specified namespace. This is to
make sure that an addition of a same-named variable in the namespace will not change
the functionality of the script. By explicitly accessing the namespace, as described in
Best Practice, you can still target the shadowed variable in the specified namespace, by
using the temporary namespace specifier (::).

The local namespace is created at the start of a script, and deleted when the script
terminates. Therefore the variables and types stored within the local namespace are not
persistent.



2.2. Using Namespaces

When a script starts, it starts out with the local namespace. Unless defined, the local
namespace contains no variables, and only the built-in functions and types.

A script can switch namespaces at any time using the @using script operation. Only
one namespace will be active at any time, with the exception of the local namespace,
which is always active and its variables always shadow the active namespace.

A variable or function can be temporarily accessed from a different namespace using the
namespace specifier. A variable can be accessed using namespace::variable, a function
using namespace::function(), and a type using namespace::Type.

Note that when executing a function, the function’s namespace will be used. Variables
can still be supplied from a different namespace through the parameters, and the function
can still access other variables using the @using operator and temporary namespace
specifier.



2.3. Best Practice

When using multiple variables, functions and/or types from one namespace, it is best to
use @using.

Sometimes it is required to use multiple namespaces at the same time, such as using a
variable from one namespace in a function of a different namespace. In this case you can
use @using for the most frequently used namespace, to limit unnecessary words and
characters.

When using a namespace once, it is best to use the temporary namespace specifier (::)
since adding additional lines would be less clear than adding the specifier.

It can occur that a variable with the same name is both defined in the namespace that
is currently set as @using, and in the local namespace (that is, earlier in the script). To
access the local variable, there is no need to (and you cannot) use a namespace specifier
to access the variable. To access the namespace variable, you are required to use the
temporary namespace specifier (::) to access the variable, because the local namespace
shadows the variable within the specified namespace, unless explicitly using the variable
from the namespace.

In general, it is best to use the most readable approach. @using is intended for repeated
usage, while :: is intended for one-time-use of namespaces.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
3. Variables

Variables are the objects that can be adjusted to make a process behave differently. A
process without variables yields the same result every time. Variables have certain characteristics defined by their type. The type defines what a variable can do and restricts
what variable can be passed to functions. Variables can be manually set and/or changed
through operators.


Contents


	Variables


	Types


	Built-in Types


	Literals


	Qualifiers


	3.4 Usage


	Null










3.1. Types

Variables do not have a strict feature set. They are simply name tags for a value, to
which a new value can be attached. The Type is what determines in what format the
value is stored and what operations can be performed on the value.

Whenever a variable is defined, the Type is always the word immediately preceding the
variable’s name. For example, the variable name defined as:

@define String name





has the type String (see Built-in Types for more information on the String type).
The type both represents how the variable can be instantiated and how it can be used.



3.2. Built-in Types

MSC 2 comes with a set of predefined types which can be used at any time from any
namespace. User defined types can build on top of these to further expand functionality,
or represent an entire different structure.

As of version 2.0, MSC contains:



	
	




	String

	Plain text. Commands passed to @bypass, @command, @console and

@player must be of this type.




	Int

	A (signed) integer. Represents whole positive and negative numbers.

Can be used to define an amount among other things.

Can represent values from 2^{31} through 2^{31} − 1.




	Long

	A (signed) integer. Represents more values than an Int can. Can

represent values from −2^{63} through 2^{63} − 1. Generally not necessary

until the Int does not suffice.




	Float

	A single-precision floating point number. Can represent a wide range of

decimals (but sometimes suffers from being unable to represent a

number). Can be used for a lot of things.




	Double

	A double-precision floating point number. Can represent a wider range of

decimals than Float can (but still not all). For general purposes, Float is

likely enough, but if it is not, Double can represent more precise state

when needed, such as when doing precise maths




	Boolean

	Can either be true or false. Used to keep track of conditions



	Player

	Represents the Minecraft Player. Contains a wide range of utility

functions and access to player statistics and variables. Can be used to

directly read and alter a Player state, to some extent.




	Entity

	Represents a Minecraft Entity. Contains a wide range of utility functions

to read and alter the Entity state, to some extent.




	Block

	Represents a Minecraft Block. Contains information about a block and

ways to alter it, to some extent.




	Location

	Represents a position in a world.



	BlockLocation

	Represents a position of a block in a world.



	Position

	Similar to Location, but has yaw and pitch.



	Vector3

	A 3 dimensional vector of Doubles.



	Vector2

	A 2 dimensional vector of Doubles.



	BlockVector3

	A 3 dimensional vector of Ints.



	BlockVector2

	A 2 dimensional vector of Ints.



	Region

	Can either be used to represent existing WorldGuard regions

in the world, or you can create your own region.







For a more detailed list on what functions and variables each of these types expose, take
a look at the appendix: Built-in Types. Built-in Types



3.3. Literals



	String

	”Content of the string” - text contained between two ” characters. If a

String has to contain a ” character, use the escape character: . ”This is

in the string: ” ”




	Int

	1 - any integer



	Long

	1L - an integer followed by L.



	Float

	1.0 - any decimal.



	Double

	1.0D - any decimal followed by D.



	Boolean

	true or false.






Note that Block, Player and Entity have no literals. They always require constructors
to instantiate the state. User-defined types can be instantiated in the same way, taking
parameters as required.



3.4. Qualifiers

When defining a new type or namespace, sometimes it is useful to have variables that
are player relative, or a variable that has a constant value. Persistent variables can
be qualified by qualifier keywords that determine their behaviour. Where the type
determines what can be done with the value of the variable, the qualifier determines
what properties the variable itself has. As of MSC 2.0 there are two qualifiers:



	final

	A constant variable. Once initialized cannot be changed. Useful for more

clear scripts, and makes changing values more maintainable




	relative

	A variable that is player-bound. This is MSC 2’s way of defining

per-player variables, rather than shared variables









3.5. 3.4 Usage

As described in the previous sections, variables consist of one or more qualifiers, a type
and a changeable value. Through commands, variables can be defined and operated
upon. The main commands are:

/variable define <namespace> [qualifier [...]] <Type> <name> [= expression]





/variable set <namespace> <name> = <expression>





In scripts this is can be written shorter by:

@define <Type> <name> [= expression]





and

@var [name =] <expression>





namespace is where you define which namespace is being altered.

[qualifier […]] is where you define any amount of qualifiers. These are not present
in scripts because variables in scripts are not persistent.

Type is where you define the Type of the variable. The Type has to be an already
defined Type within the namespace. (If using an external type, use :: to indicate the namespace it comes from). Type names always start with an uppercase
character.

name is where you define the name of the variable. Choose a descriptive name
that makes clear what the variable is used for. Variable names may not begin with
an uppercase character.

expression is how you first initialize the variable. Note that when using a final
variable, this field is required. Otherwise, this can be left blank, to initialize
the variable to their default state. (See Built-in Types for the default states of
each type). For user-defined variables this will be null. See Expressions for more
information on how to build an expression.



3.6. Null

Types that do not have a default state can sometimes be null. Null means multiple
things, taking the form of ’unrepresentable’, ’undefined’, and ’non-existent’. As became
apparent in the previous section a variable can be defined without expression, automatically taking on the default state. User-defined variables do not have a default state, and
therefore automatically take the value null.

Some functions are unable to return a meaningful result. For example the Player()
constructor can only return a Player if the player exists. If the Player is not online, it
cannot return a meaningful result and thus returns null.

The reader should be aware that this case can occur. Performing operations on and
with null variables will cause the script to fail with a NullPointerException. It is wise
to keep track of the variables that can become null and script defensively. The Script
cannot make assumptions to what behaviour is wanted when the value is undefined, and
therefore it should always be explicitly stated.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
4. Lists

Lists are an ordered sequence of elements. In MSC, list indices are zero-based.


4.1. Constructors

Lists are defined using X[], where X[] is a list of type X (e.g. Int[])

Lists can be initialised with x[a, b, …, z] (where a, b, …, z are zero or more instances of X.

@define Int[] xs = Int[5]
@define Int[] ys = Int[]
@define Int[] zs = Int[5, 3, 2, 1]

@player {{xs}}
@player {{ys}}
@player {{zs}}





[5]
[]
[5, 3, 2, 1]







4.2. Indexing

List indexing can be done with…

Retrieving a value:

@player {{xs[0]}}





5





Setting the value of an item:

@var xs[0] = 5





Both:

@var xs[1] = xs[0] + 1
@player {{xs}}





[5, 6]





Accessing an out of bound index will throw an IndexOutOfBoundException and terminate the script.



4.3. Methods







	length()

	Reports the number of items in the list.



	append(T value)

	Append a value to the end of the list.



	remove(Int index)

	Removes the item at the specified index from the list.



	clear()

	Removes all items from the list.



	reverse()

	Reverses the order of the items in the list.



	shuffle()

	Randomises the order of the items in the list.



	pop()

	Removes the last element of the list and returns it.



	Boolean contains(T value)

	Returns whether the list contains an element that equals value.



	Int find(T value)

	Returns the first index that matches the value. Throws an

ElementNotFoundException if the value is not in the list.

(Tip: always use contains before find)




	String[] split(String separator)

	Splits the string based on the separator into A

list of pieces around the separator. For example:

“hi world”.split(” “) would yield: [“hi”, “world”].




	String[] concat()

	Concatenates a list of Strings together:

String[“hello”, “world”].concat() yields “helloworld”.




	String join(String delimiter)

	Joins a list of strings, inserting the delimiter between each string:

String[“hello”, “world”].join(” “) yields “hello world”.




	Long[]/Float[]/Double[]/Int[] avg()

	Returns the average of the elements in the list.



	Long[]/Float[]/Double[]/Int[] sum()

	Returns the sum of the elements in the list.






An alternate way to append to a list, simply assign a value to an index one greater than the last item in the list:

@define Int[] x = Int[1, 2, 3]
@var x[x.length()] = 4.
@player {{x}}





[1, 2, 3, 4]







4.4. Namespace:

The list namespace contains the  range() function.

Int[] range(Int start, Int end) will generate a list of numbers from start (inclusive) to end (exclusive).

This allows you to iterate through every index in a list with @for Int i in range(0, list.length()).



4.5. For Loops

For loops are used to iterate over the List iterable.

Loops are defined with @for <Type> item in <Type>, and terminated with @done

@for Int i in Int[1, 2, 3, 4, 5]
    @player {{i}}
@done





1
2
3
4
5





This can also be done with:

@for Int i in list::range(1, 6)
    @player {{i}}
@done





1
2
3
4
5





Looping through your list can be done by setting the end to list.length().

@define Int[] x = Int[1, 5, 9]
@for Int i in list::range(0, list.length())
    @player {{i}}
@done





1
5
9







4.6. Player Indexing

Relative variables support player indices to get the value for a specific player. Suppose we have a relative Int x = 5.

For rickyboy320, x = 3.
For CreepaShadowz, x = 7.

@player {{x[Player("rickyboy320")]}}





3





@player {{x[Player("CreepaShadowz")]}}





7





Note that indexing is done on Players - so getting a Player object of an offline player can only be done using UUIDS:

@player {{x[Player("63664a36-a4c4-4541-a337-dd5639600407")]}}





should always succeed, where the name-indexed variant can fail (like any Player lookup done in such a way). Again, if this fails, the script terminates, so be mindful of this!

If a relative variable is indexed with a player that has no value set on the variable yet, a copy of the default is returned.

Writing to an indexed relative variable is also supported:

@player {{x[Player("rickyboy320")]}}
@var x[Player("rickyboy320")] = 8
@player {{x[Player("rickyboy320")]}}





3
8







Footnotes



            

          

      

      

    

  

    
      
          
            
  
5. Expressions

Expressions describe manipulations on variables with functions, operators and variables.
They follow a few rules, but can be completely freely made as seen fit to the context.
Expressions range from very short assignments to complex logic that can be stored or used
further in the script, or used to perform an action themselves. They are the foundation
of variables, giving the user many ways to manipulate and handle data.


5.1. The Expression

In the simplest sense, an expression is a piece of text that describes what to do. In
the context of scripts, expressions are used to perform actions (functions) or manipulate
variables (operators), or these two combined.

Expressions always evaluate toward one or no value. An expression ending in a function
call with no return type will result in no value. Other expressions will always result in
one value of a static type.

This static type can in turn be used in a different part of the expression, and so on.
They can also be stored in a variable of the correct type.

Some examples of simple expressions are:

@player {{5 + 5}}
@player {{10 / 5}}
@player {{"Hello" + "World"}}





10
2
HelloWorld





Expressions can also be chained or nested:

@player {{"Hello" + "World" + 5 + 5}}
@player {{(5 + 5) * (5 + 5)}}
@var player.setMaxHealth(5 + 5)





HelloWorld
100





As described in Execution Order, some operators take precedence over others, such
as the * operator taking precedence over the + operator. If operators have the same
precedence, the expression is evaluated from left to right. The above example: ”Hello”
+ ”World” + 5 + 5 therefore evaluates to ”HelloWorld55”.

You may be confused why it is not ”HelloWorld10”. The + operators has equal precedence
whether it is used for a String or an Int. Reading left to right, first Hello and
World are concatenated by the + operator, then HelloWorld + 5 is evaluated, which results
in HelloWorld5 (because String + Int = String), then HelloWorld5 + 5 is evaluated,
resulting in HelloWorld55.

Before a function is called, each of the parameters are first processed. This happens
the same way as a normal expression. Thus player.setMaxHealth(5 + 5) evaluates to
player.setMaxHealth(10) after which the function is successfully called.

Sometimes you may accidentally write an expression that does not work. For example,
you write:

@var Block(5, 5, 5, "Zero") + 5





Operator ’+’ is not applicable on types: Block, Int





Because Block has no + operator, this expression cannot complete, and will error. Sometimes
this may be less apparent because of chained expressions. In general it is smart to
keep your expressions as simple as possible, often preferring the most readable solution.



5.2. Execution Order

Chained expressions have an execution order. You are probably used to this in maths
as well: * comes before +, but + and - happen at the same time (in our case from
left to the right). Expressions also follow these simple rules. The operators with higher
precedence are executed first, and operators with same precedence are executed left to
right.

Expressions have a few more operators than those generally used in maths however, and
we will list the execution order here. From top to bottom, top executes first, and bottom
executes last.

Table 4.1: Precedence of operators



	()

	Parentheses around an expression prioritize this sub-expression.



	!

	Negation of Booleans.



	^

	Exponentiation



	*, %, /

	Multiplication, modulo, division.



	+, -

	Addition, concatenation and subtraction.



	<,<=,>,>=

	Relational operators.



	==, !=

	Equality or non-equality.



	&&

	Logical AND.



	||

	Logical OR.



	=

	Assignment.






For example:

@player {{5 - 5 * 5}}
@player {{5 > 10 && 4 != 4 || 5 == 5}}





-20
true





The first one is fairly logical following basic math. The second may be harder to see
at first. Due to the operator precedences, the expression is evaluated as ((5>10) &&
(4 != 4))||(5 == 5). This in turn evaluates to ((false) && (false))||(true), which
corresponds with false||true, which is true.



5.3. Short Circuit

In the case of the logical operators, the expression will short circuit whenever the
expression has gathered enough info about the result. For example, assuming function()
returns a Boolean:

@var true || function()





will never execute function, because the first operand was already true.

One of the most important reasons for this feature is the usage in if statements:

@define String var
@if var != null && var.toLowerCase() == "this is a string"
    @player Incorrect.
@else
    @player Correct!





Correct!





It will never evaluate the right side of the logical AND, because the left side was already
false, saving you from a NullPointerException being thrown during the execution of the
script. This will save some lines of code to check if something is null, and almost always
results in predictable behaviour.



5.4. Syntax

Expressions follow fairly strict, but very logical syntax rules. We will list all syntax rules
here with examples. For a more summarized list, refer to Syntax.



	5.4.1. Syntax

	5.4.2. Define

	5.4.3. Var

	5.4.4. String Formatting

	5.4.5. Expression







Footnotes



            

          

      

      

    

  

    
      
          
            
  
5.4.1. Syntax

Expressions follow fairly strict, but very logical syntax rules. We will list all syntax rules
here with examples. For a more summarized list, refer to Syntax.



5.4.2. Define

The syntax for the define operator and command is as follows:

[qualifiers [...]] <Type> <name> [= expression]





qualifiers can be any amount of qualifiers handled in Qualifiers. These always precede
the rest of the definition and are always in lowercase. The qualifiers are keywords and
can therefore not be used as a variable, function or type name. Qualifiers can only be
used on persistent variables, and therefore not in scripts.

Type is the type of the variable, which always starts with an uppercase character. This
makes it easier to distinguish the type from the variable and qualifiers.

name can be any word that is not a keyword or literal. The name can consist of the
following characters: a-z, A-Z, 0-9, _. The name cannot start with a number, _, or an
uppercase character.

expression has to be a valid expression resulting in a value of Type. See Expression

@define String correctName = "5"
@player {{correctName}}
@define String 0invalidName
@define String InvalidName
@define InvalidType correctName
@define String true
@define String final





5
Variable does not start with a lowercase character: ’0’
Variable does not start with a lowercase character: ’I’
Type ’InvalidType’ could not be found in namespace local
Collision with a keyword: ’true’
Collision with a keyword: ’final’





/variable define namespace final String example = "Unchangeable."





@var namespace::example = "5"





Variable ’final String example = Unchangeable’ is declared final and
can therefore not be assigned a new value.







5.4.3. Var

The syntax for the var operator and command is as follows:

[name] <op> <expression>





name can be any predefined variable, or field that is available.

@define String example = "This is an example of good things."
@var example = "5"





@define String example = "This is an example of bad things."
@var undefined = "5"





Variable ’undefined’ could not be found in namespace local





op can be either ’=’ or any of the numerical operators followed by ’=’. The former case
sets the variable to the result of the expression, the latter case performs the operation
on the variable itself and the expression, and saves the result in the variable. Available
operators are: =, +=, -=, *=, /=, %=.

@define Int example = 5
@var example += 5
@player example





10





expression has to be a valid expression resulting in a value of the correct type. See
Expression Expression.



5.4.4. String Formatting

The String literal supports a formatting context in which all expressions are allowed.
This is useful for both debugging and readability.

Within any String literal, an expression is started with a ’{{’ and closed with a ’}}’.
The resulting value is automatically converted to a String. If this is not possible, it will
result in an error.

@define String hello = "I can do math: {{5 + 5}}!"
@player {{hello}}





I can do math: 10!







5.4.5. Expression

The expression syntax allows any variables, literals and functions to be used.

Variables are just referred to by their name.

@define String name = "Hello"
@player {{name}}





Hello





Literals follow the syntax rules of their type.

@player {{"This is a literal."}}
@player {{true}}
@player {{5.0D}}





This is a literal
true
5.





Function names are always immediately followed by an opening parenthesis ’(’, after
which the parameters come, separated by a comma, and closes with a ’)’. Functions
always start with a lowercase character to distinguish from a constructor.

@player {{"Hello".contains("e")}}





true





To chain variables, results of functions and literals, operators are required.

@player {{5 + (5 / 5)}}
@player {{!true}}
@player {{!(true && true)}}





6
false
false





The resulting type is decided by the last remaining object after all sub-expressions have
been evaluated, and has to fit the context. If any sub-expressions can not perform an
operation with an operator, or be assigned to a given type, the expression fails and an
error is thrown.

@define Int x = 5 + 5
@define String y = "5" + 5
@define Block z = Block(0, 0, 0, "Zero")
@player {{x}}
@player {{y}}
@player {{z}}
@player {{z + 5}}





10
55
0 0 0
Operator ’+’ is not applicable on types: Block, Int






Footnotes



            

          

      

      

    

  

    
      
          
            
  
6. Scripts

A script is an ordered list of script operations. A script will execute each script
operation in succession to accomplish a certain objective. Within a script commands can be
executed, variables manipulated, game state manipulated, script flow can be controlled
and more. Scripts differ from functions in that they are triggered in specific situations,
while a function has to be called explicitly, from a script, command block or through a
command.


6.1. Script Operators



	6.1.1. Script Operators

	6.1.2. Command Operators

	6.1.3. Branching Operators

	6.1.4. Control Operators

	6.1.5. Variable Operators

	6.1.6. Chat Operators







6.2. Script Anatomy



	6.2.1. Anatomy of Scripts

	6.2.2. Script Types

	6.2.3. Lines

	6.2.4. Parameters







6.3. Script Commands



	6.3.1. Commands

	6.3.2. Action

	6.3.3. Type







6.4. Paste.minr.org



	6.4.1. Paste.minr.org







Footnotes



            

          

      

      

    

  

    
      
          
            
  
6.1.1. Script Operators

Every line within a script contains exactly one operator. The operator gives meaning
to the line, because it determines what has to be done with the arguments. There are
operators to execute commands, control the script flow and manipulate variables. Each
such type has a dedicated section. Additionally, a full summary is available in Script Operators.


Contents


	Script Operators


	Command Operators


	Branching Operators


	Control Operators


	Variable Operators


	Chat Operators







6.1.2. Command Operators

There are three operators to execute a command in a script: @command, @bypass and
@console.

@command <command>

Executes the command with the permissions of the player. A greenie can use /warp,
/rocket, while a whitie cannot. @command keeps in mind these differences in rank, and
executes a command normally as if it was typed in chat.

@bypass <command>

Elevates the permissions of a player to semi-admin rank. It allows the script to perform
all Minr admin commands and most Minecraft op commands (including specifiers @a,
@e, @p, @s, @r).

@console<command>

Executes the command from the console, which means all commands can be executed,
but it has the drawback of having to explicitly state the player, world, or sometimes not
being able to perform a command at all.

To prevent lag and potential server hiccups, all command operators introduce a one-tick
delay between their execution and the rest of the script. When a script or function uses
a substantial amount of commands, the script may take a while to execute (remember,
20 ticks is one second, so 20 commands already takes one second).

@command /say hi
@bypass /say hi
@console /say hi





Assuming a non-admin executes this script:

You do not have the permission to execute this command.
Machete: hi
Machete: hi





@command /rocket
@bypass /rocket
@console /rocket





Assuming a whitie or a blue executes this script:

You do not have the permission to execute this command.
You rocketed yourself.
Invalid command: missing player parameter.







6.1.3. Branching Operators

Sometimes a script needs to conditionally execute a part of the script. For this reason
we have branching operators, which provide ways to cause different execution flows
using variables. The branching operators can be nested, causing more and more possible
execution paths. Be warned, as increasing the amount of execution paths greatly
complexifies the script.

@if <Boolean expression>

Takes an expression that evaluates to a Boolean. If the Boolean is true, the following
section is executed, if it is false, the section is skipped until reaching an @elseif, @else
or @fi of the same level.

@else

Executes the following section if the preceding @if and @elseif operators of the same
level were false.

@elseif<Boolean expression>

Executes the following section if the preceding @if and @elseif operators of the same
level were false, and the expression of this @elseif evaluates to true.

@fi

Ends the conditional section. Any @if, @else or @elseif operators of the same level will
no longer apply after this operator.

@return
Stops the execution of the current script or function, and optionally returns a value.

Because the branching operators can be nested, the script maintains an ’if level’ to
keep track of which @if has impact on which @else and @elseif operators. This level is
demonstrated visually through the use of indentation in both this document and any
script viewings (such as /scripts view).

@if true
    @player 1
    @return
@fi
@player 2





1





@if true
    @if false
        @player 1
    @else
        @player 2
    @fi
@elseif true
    @player 3
@else
    @player 4
@fi
@player 5





2
5







6.1.4. Control Operators

There are also operators that provide control on the execution of a script.

@delay <time>

Allows an arbitrary delay in the midst of a script, making the rest of the script wait
with execution until the delay is over.

@cooldown <time>
Takes an arbitrary time that controls when the script can be re-executed by the same
player. If used in a function, a function will terminate the calling script when the function
is on cooldown.

@global_cooldown<time>

Takes an arbitrary time that controls when the script can be executed again by any
player. If used in a function, a function will terminate the calling script when the
function is on cooldown.

@cancel

Disables the interaction between player and the object the script is bound to. Only has
effect in interact scripts and before any delays introduced by other operators (such as
@delay, the command operators and other halting operators).

Do note that any @cooldown and @global_cooldown operators only have effect once they
are executed. Due to these constraints, @cancel, @cooldown and @global_cooldown have
to be used before any delay because we cannot turn back time to stop an interaction
after it has already happened. Therefore an interaction should always be cancelled while
it is still happening, thus before any delays. Cooldowns are locked to the beginning in
order to ensure proper usage.

The time parameter is explained in Time.



6.1.5. Variable Operators

To simplify the definitions of local variables and altering of local and global variables,
MSC 2 introduces new operators that can readily alter the variable state.

@define <Type> <name> [= expression]

Defines a new variable and sets the value to an optionally defined expression. The
expression has to match the type of the variable. Refer to Define for more information
on the parameters.

@var [name =] <expression>

Executes an expression. This can be an assignment, function call, or any valid expression.
For more information, refer to Var.

@using <namespace>
Switches the namespace of lines following this line. For more information, refer to Using Namespaces.



6.1.6. Chat Operators

To interface with the player chat, there are operators that send a message, send a
clickable message or store a player’s input in a variable.

@player <message>

Sends a message to the player. Supports color codes prefixed by &. Supports
String Formatting by using{{and}}.

@chatscript <group> <time> <expression>
Binds a function to the first following @player script operation. The function can be
activated by the player at any time upon clicking the chat message.

Only one of the chatscripts in the same group can be executed. This means that when
binding a chatscript to multiple messages with the same group, only one chatscript can
be executed.

Once time runs out, the chatscript expires and the expression can no longer be executed
by clicking the text in chat. The chatscript also expires once the chatscript has been
executed once.

/function define example Void one()





/function define example Void two()





/function define example Void three()





/s c f example one @player one





/s c f example two @player two





/s c f example three @player three





@chatscript same example::one()
@player Option 1
@chatscript same example::two()
@player Option 2
@chatscript other example::three()
@player Option 3





Option 1
Option 2
Option 3





If the player clicks Option 1:

one





Then, if the player clicks Option 2:







Then, if the player clicks Option 3:

three





two was not displayed because it shares the same group with one, and since one was
already executed, two could no longer be executed. three was a separate group, and
therefore was able to be executed after one executed.

@prompt <time> <variable> [message]

Halts the script until the player types something. If time runs out, the script ends here,
sending the message the optional message, or ’Prompt expired’ otherwise. Message
supports color codes with &.

If the player types something in time, the text the player typed is stored in the passed
variable. Therefore, variable has to be of type String.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
6.2.1. Anatomy of Scripts


Contents


	Anatomy of Scripts


	Script Types


	Lines


	Parameters







6.2.2. Script Types

As mentioned before, scripts are triggered, while functions are explicitly called. Scripts
have to be bound to a block, entity, ground, or area in order to function. A script can
be triggered by walking over a block, interacting with an entity, entering an area, or
interacting with a block.

Each of these triggers come with a type.

interact

The interact script type triggers when the player interacts with a block (stone, button,
or anything else). There is no vanilla counterpart to this, except triggering a button or
causing a block update.

The interact script type is often used for passwords, submit buttons, NPC (wool-type)
dialogue, and much more.

walk

The walk script type triggers when the player walks over the block containing the script.
If the script was bound to a block that is now removed, the script still triggers when the
player is in the space just above the block.

The walk script type is often used for traps, story elements, resets, and much more.

ground

The ground script type triggers only when the player walks over the block containing
the script. It only triggers once the player is on the block, and not while jumping over
it, or when the block is air.

The ground script type can be used for crumbling pathways and other effects that require
the player to stand on the block.

entity

The entity script type triggers when a player interacts with an entity. The script gets
removed once the entity dies or despawns. When a script is applied to an entity, the
server tries its best to keep the entity from despawning, but sometimes the inevitable
occurs. Therefore, be prepared to respawn the entity with all scripts in place (by for
example creating a function that correctly restores the entity may it be missing, and
calling it whenever the entity is needed).

The entity script type is often used for dialogue.

area

The area script type is a new script type in MSC 2.0, triggering a script once when a
player enters the set area.

function

To create content in a function, the function type is used. A function is always explicitly
called from a script or other function. When adding script lines to a function, the
function has to be defined using the function command. See Function Commands for
details on defining a function



6.2.3. Lines

Every script consists of script lines, which are the actual content of the script. Each line
is prefixed with the Script Operator, described in Script Operators. The Script Operator
takes parameters that make up the rest of the script line.

A script is executed from top to bottom, waiting, delaying and executing commands as
necessary. A script may not execute fully when a @return operator is used. @return
cancels the script upon being run, halting further execution. Any resets should therefore
always be done before the script terminates.

Once a script starts, a local namespace is created. In this namespace temporary variables
can be declared using @define. Since the script executes from top to bottom, the script
cannot use a variable before it is defined. The local namespace of the script always
overrides the global namespace. Even if a used namespace contains a variable of the
same name as the local namespace, the variable in the local namespace will always be
used, unless a namespace specifier is used (::).

Once the script ends (due to a @return, expired @prompt or the end of the script), the
local namespace is deleted, including any variables stored in it.



6.2.4. Parameters

Alongside default types and variables, a script can also contain parameters. Script
Parameters are set by the ’system’. Parameters can be accessed much like any other
variable.

A script can have the following basic parameters (situationally, use /s v type to see which
ones are present):

player

A Player type. Represents the player executing the script. Is not present within functions.

block

A Block type. Represents the block the script is bound to (if any). Is not present within
functions, entity scripts or area scripts.

entity

An Entity type. Represents the entity the script is bound to (if any). Is only present in
entity scripts.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
6.3.1. Commands

The scripts command always has the following format:

/script <action> <type> [typeparameters] [actionparameters]







6.3.2. Action

A summarized version can be found in the appendix: Supported actions for script commands

In this section, all <type> [typeparameters] are replaced by … for easier overview. Do
note that the type is still required, and the type parameters come before the action
parameters.

action can be one of the following:

create … [line] <@operator> <script>

Adds a line to the end of the script. When line is passed, it adds the line on the given
line number instead.

Example:

/script create interact @player hi!





@player hi!





/script create interact @player hi2!





@player hi!
@player hi2!





/script create interact 1 @player hi3!





@player hi3!
@player hi!
@player hi2!





view …

View the lines of the script in chat.

Example: (viewing the script created above).

/script view interact





@player hi3!
@player hi!
@player hi2!





remove … [line]

Remove the entire script. When line is passed, it removes only the line instead.

Example: (editing the script created above).

/script remove interact 1





@player hi!
@player hi2!





/script remove interact











info …

List metadata and comments about the script.

export …

Export the script to hastebin. (See Hastebin for more information).

import … <id>

Import the script from hastebin. id is the identifier of your hastebin script, and should
be passed. (See Hastebin for more information).

copy

Copy all scripts in a World-Edit selected region to the players’ clipboard, relative to
player position.

paste <type>

Pastes all scripts of type previously copied to clipboard relative to player position.

wipe <type>

Removes all scripts of type in a World-Edit selected region.

count <type>

Counts all scripts of type in a World-Edit selected region.

undo

Undoes a previously executed Script command.



6.3.3. Type

Type is one of the triggers described in Script Types. Each type has their own set of
optional type parameters to select a block, entity, area or function. Some types also
support leaving this blank, allowing the player to interact with a block, entity or area
to define it afterwards.

interact [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

walk [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

ground [x y z] [world]

x y z are the coordinates the script should be bound to. world is the world in which the
block should be found. If world is undefined, it will take the player’s current world. If
x y z are undefined, the player will be asked to interact with a block to bind the script.

entity [uuid] [world]

uuid is the UUID of the entity the script should be bound to. world is the world in
which the entity should be found. If world is undefined, it will take the player’s current
world. If uuid is undefined, the player will be asked to interact with an entity to bind
the script. If no entity exists with the given UUID, the command will fail.

area [world] <region>

world is the world in which the block should be found. If world is undefined, it will take
the player’s current world. region is the WorldGuard region the script should be bound
to. The script is executed upon entering the region.

function <namespace> <function>

Binds the script to the corresponding function in namespace. If no such function exists
in the namespace, the command will fail.

method<namespace> <Type> <method>

Binds the script to the corresponding method in Type. If no such method exists, the
command will fail.

constructor <namespace> <Constructor Signature>

Binds the script to the corresponding constructor. The Constructor Signature serves to
distinguish multiple constructors with different signatures, such as:

String(Player)
String(Int)





These, while having the same type, have different signatures. To access these constructors
(note that built-in constructors cannot be edited), you would use the full definition, in
contrast to functions and methods, where only the name suffices.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
6.4.1. Paste.minr.org

Minecraft has a pretty terrible way of inputting scripts. There’s the option through chat,
but that gets unreadable fast, and does not support multiple lines. We could use books,
but they have limited horizontal space, which means most lines would wrap. Signs are
no option either. There must be a better way to type scripts, right?

MSC 2 supports paste.minr.org[#1], which is an online coding pastebin based on Hastebin. You can write text, press
save, and a link will be generated that you can share with everyone. MSC 2.0 takes this
raw text line by line, and converts it to a script.

Script can be imported from paste.minr.org using:

/script import ... <id>





and exported using

/script export ...





When you save your piece of text on paste.minr.org, your URL will be appended by an identifier
(a few random characters). You should use this identifier as the id when importing.

Exporting will upload the current script to paste.minr.org, after which you can clone and edit
the script, and import the edited script.

Paste.minr.org uses automatically detected programming languages, resulting in MSC lines
being picked up as some programming language. Paste.minr.org will automatically include
the programming language’s extension. Whether you include the extension, or even the
entire URL, or not, it will work regardless.

Example

[image: ../_images/paste-1.PNG]
Figure 5.1: Write a script in paste.minr.org

[image: ../_images/hastebin2.PNG]
Figure 5.2: Save the script.

[image: ../_images/paste-3.PNG]
Figure 5.3: Find the identifier.

/script import interact fomomokumo





Figure 5.4: Run the import command, and press the block. That’s it!

Exporting a script is as easy as running

/script export interact





and clicking the block, after which a link to the paste.minr.org will be generated. To edit this
script, you can press the edit button:

[image: ../_images/hastebin4.PNG]
Figure 5.5: Click the edit button, and start editing. Then follow the instructions above
to import the script again.


Footnotes



[#1]
https://paste.minr.org/





            

          

      

      

    

  

    
      
          
            
  
7. Functions

Functions are a way to reuse scripts. They can take parameters that allow one function
to do many things, depending on the input. Functions can simply run preprogrammed
lines, but they can also return a value.


7.1. The Function



	7.1.1. The Function

	7.1.2. Parameters

	7.1.3. Return Type







7.2. Function Syntax



	7.2.1. Syntax

	7.2.2. Definition

	7.2.3. Function Calls







Footnotes



            

          

      

      

    

  

    
      
          
            
  
7.1.1. The Function

A function is a script that can be explicitly called at any point, but is never triggered
implicitly by the server. Because they are explicitly called, they can be called from
within another function, from within a script, or even triggered as a chatscript.

Functions take parameters, which allows them to do a similar operation on different
values, or simply change the operation when passed a different value.

Because it may be useful to grab a value from a type, convert a series of input variables
to a single output variable, or anything else you can come up with, functions can return
a value as well. Returning a value will allow the caller to store or use the result in a
different script or function, further allowing for re-usability. For this reason functions
have a return type, alongside parameter types. We will go a little more in depth later.

Functions are primarily meant to write parts of a script that are repetitive or can be used
somewhere else. They are also used to condense a long script into one call (such as the
use of functions in @chatscript).

Do keep in mind that functions are very much able to stall your script using @delay,
@prompt and similar script operations. Cooldowns (@cooldown and @globalcooldown)
terminate the calling script with an error when the function is on cooldown.

The definition of a function looks like:

ReturnType functionname(Type_1 name_1, ..., Type_n name_n)





Then the syntax of calling this function is as follows:

functionname(parameter_1, ..., parameter_n)





The ReturnType is discussed in Return Type. The parameters are discussed in Parameters.



7.1.2. Parameters

Functions are optionally defined with a series of parameters. Each parameter acts as
a simple variable, but in reality they are a little more complex. A variable entering a
function is a pass-by-value, which means that changing the value of the parameter will
not change the value of the variable in the caller’s script. The values of the call are
copied over into the function, where they act as local variables.

Because they act as variables, they have to also be defined with a Type. However,
because they are not persistent variables, qualifiers have no impact and are therefore
not allowed.

Because they are copied over with value, variables with the relative qualifier will contain
the player’s value, the types passed will remain the same, and therefore any actions
on a player within the function will also succeed. The only difference between these
parameters and default (global) variables is that they do not change the value on the
label of the variables that the function was called with.

Variables passed to a function should always match the type of the definition. If this is
not the case, an error will occur.



7.1.3. Return Type

Functions can optionally return a value. The type of the value returned is governed by
the definition of the function. Any @return operators should therefore return a value
of the given type, and it is best practice to always explicitly return a value (or null).
Implicitly, the function will return null when no return value is defined.

When no type is passed, the function internally takes the type ’Void’, which is a type
that has no functions, no operators, no literals and no constructors. Thus, when a
function has no (or Void) return type, any expressions involving the function will fail,
unless the function is a standalone expression.

When the function does have a return type, it can be freely used in expressions following
the rules of the type. Functions are evaluated in the same order of expression rules, so
keep in mind that short circuiting can occur.

Returning is always done using the @return operator, which takes an optional expression.
The expression should always evaluate to the return type defined for the function, and
can be left empty if the return type is Void or not present.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
7.2.1. Syntax

A function can either be a standalone function, or a function bound to a type (often
known as methods).


Contents


	Syntax


	Definition


	Function Calls







7.2.2. Definition

Functions are always defined with a name, parameter list and optionally a return type
in the following format:

ReturnType name(Type parameter1, Type parameter2, ..., Type parametern)





The amount of parameters is completely variable. It is possible to declare a function
without parameters by simply ending the declaration without defining any parameters:

ReturnType name()





When a function should merely perform an action, and should not result in a value,
ReturnType can be removed as well:

name()





Do note that when a function is defined without a return type, any @returns taking
variables will error, as it is probably a mistake.

In general, it is best to keep the amount of parameters within a reasonable range. Having
a large amount of parameters not only makes it hard to read, but may also be hard to
remember, document, and is often better split up into multiple functions. Some personal
judgment is required to see what fits the situation best.



7.2.3. Function Calls

The functions can be called as follows, assuming the function is in the currently used
namespace. Given a function called sum taking two arguments:

sum(parameter1, parameter2)





If the function is not in the current namespace, you can either use a different namespace
using @using, or using the local namespace specifier:

math::sum(parameter1, parameter2)





In a script situation, this can look like:

@define Int result = math::sum(1, 2)
@player {{result}}





3





Most types (such as String, Player, Block and Entity) provide functions. For example,
the function closeInventory() contained in the Player type can be called as follows:

@define Player player = Player("rickyboy320")
@var player.closeInventory()






Footnotes



            

          

      

      

    

  

    
      
          
            
  
8. User defined Types

User defined types are a way to reuse types. Common constructs can be grouped into
a type, and be used like any other type. This allows users to build abstraction layers
on top of the basic types, which should reduce overhead in scripting and greatly simplify
commonly used constructs.


Contents


	User defined Types


	User defined Types


	Fields


	Methods


	This keyword


	Constructors










8.1. User defined Types

User defined types combine most previously handled concepts and allow them to be
grouped together into a reusable type. A Type is defined in a Namespace, so that
name conflicts should not occur. A Type can contain fields (variables) and methods
(functions). The difference between a Namespace and a Type however, is that a Type
can be instantiated. There can exist multiple variables of any given Type at any given
moment. The values of the fields are not shared, unlike the Namespace. A Type can
also be used as a Function argument, and can itself be used as a field-Type for a Type.

Because the explanation uses quite a bit of jargon, let us be a bit more concrete by using
an example throughout this chapter. Say we find ourselves constantly using the variables
x, y and z together, we can decide to create a Type. For the sake of this chapter, we are
creating the Type Location.

Types are created using the type command:

/type define <namespace> <Type>





For example:

/type define world Location







8.2. Fields

A Type can contain fields. These are effectively variables, but are bound to a given
instance of the Type. Since a Type is merely a label of what a Variable can do, the Type
defines what the Variable contains as fields.

Our example Type should contain the fields x, y and z, because we want to unify these
three variables into one structure: the Location Type.

We can add these fields to a Type using the type command:

/type variable define <namespace> <Type> <Type> <name>





For example:

/type field define world Location Int x





will bind the newly made field Int x to the Type Location.

Fields can be accessed in expressions using a dot. For example, after having added x, y
and z in our Location example, we can use:

@using world
@define Location location = Location(5, 6, 7)
@player {{location.x}}
@player {{location.y}}
@player {{location.z}}





5
6
7





The first line is a constructor, which will be handled in Constructors. Assuming the
constructor is defined as Location(Int x, Int y, Int z) and sets these variables respectively,
the above will be the result.

We can also set fields of a type after the initial definition, by also using the dot.

@define Location location = Location(5, 5, 5)
@player {{location.x}}
@var location.x = 10
@player {{location.x}}





5
10





This allows retroactively changing the values of the variable.



8.3. Methods

As with Built-in Types, User defined Types can also contain Methods. The goal of these
methods generally has to do with the state of the Type. They are to manipulate the
instance, or give information about it.

They are defined using the /type command:

/type method define <namespace> <Type> <name>([Type name[, ...]])





For example, we can define the method getX() on the Location type as follows:

/type method define world Location Int getX()





To add lines to the body of this function, we use the script command:

/script create method world Location getX @return this.x





As with built-in types, these methods can be called on a type with the dot.

@define Location location = Location(5, 6, 7)
@player {{location.x}}
@player {{location.getX()}}





5
5





They work exactly the same as any other Function described in the Functions (todo) chapter,
except that they have access to the variables’ state directly, through the this keyword,
and that they have to be called on an instance.



8.4. This keyword

The this keyword is the handle to access the state of the current instance. Normally an
instance is constructed and acted upon as a value bound to a variable. However, as the
instance yourself, there is no way to access yourself using any other means, therefore the
this keyword exists.

In our example, if our Location Type needs a function that sets the current coordinates
to the given coordinates, the type needs to reference its own fields. This can be done
using the this keyword, so that the instance can manipulate itself.



8.5. Constructors

Constructors serve to build the initial state of an instance. For example, it would be
weird to have an uninitialized Location, since its fields would all be 0. We want to set up
a Location with the right coordinates out of the box, and not wait until it is instantiated.

We can achieve this using Constructors. As described with Built-in Types, the Player,
Entity and Block Types each have constructors to initialize the state. We can define
constructors on our built-in types as well, even allowing for multiple constructors with
different definitions (as also seen in Built-in Types).

A constructor is defined much like a Type:

/type constructor define <namespace> Type([Type name[, ...]])





For example, our Location constructor taking x, y and z:

/type constructor define world Location(Int x, Int y, Int z)





We can define an overloaded constructor with the same command:

/type constructor define world Location(Float x, Float y, Float z)





The constructors’ body can be defined with the Script command:

/script create constructor <namespace> <constructor signature> <script>





For example, our Location constructor:

/script create constructor world Location(Float, Float, Float) <script>





Clearly this is a bit verbose, so look at Hastebin for more information on how to simplify
definitions.

Constructors can be chained by using @return in the constructors’ body. Of course the
Constructor should return the type that is being constructed. @return can also be left
out, returning the currently constructed instance.

In constructors the this keyword can be used to access methods and fields of the instance.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
9. Appendix


9.1. Built-in Namespaces



	9.1.1. Built-in Namespaces

	9.1.2. system

	9.1.3. math

	9.1.4. util

	9.1.5. format

	9.1.6. timer







9.2. Built-in Types



	9.2.1. Built-in Types

	9.2.2. String

	9.2.3. Constructors

	9.2.4. Operators

	9.2.5. Int & Long

	9.2.6. Float & Double

	9.2.7. Boolean

	9.2.8. Player

	9.2.9. Entity

	9.2.10. Block

	9.2.11. Item

	9.2.12. Spatial Types

	9.2.13. Location

	9.2.14. BlockLocation

	9.2.15. Position

	9.2.16. Vector3, BlockVector3, Vector2 and BlockVector2

	9.2.17. Region







9.3. Syntax



	9.3.1. Syntax

	9.3.2. Define

	9.3.3. Var

	9.3.4. String Formatting

	9.3.5. Expression

	9.3.6. Time







9.4. Commands



	9.4.1. Namespace

	9.4.2. Variable

	9.4.3. Function

	9.4.4. User Types

	9.4.5. Fields

	9.4.6. Methods

	9.4.7. Constructors

	9.4.8. Script







9.5. Scripts



	9.5.1. Scripts

	9.5.2. Script Actions

	9.5.3. Script Types

	9.5.4. Script Operators







Footnotes



            

          

      

      

    

  

    
      
          
            
  
9.1.1. Built-in Namespaces


Contents


	Built-in Namespaces


	system


	math


	util


	format


	timer







9.1.2. system

The system namespace handles all types of miscellaneous behaviour typically found in
the system, such as time.

Variables

The system namespace contains no variables.

Functions

Table 9.1: Supported Functions for the system namespace



	
	




	Long currentTimeMillis()

	Returns the current time in milliseconds. Note that

while the unit of time of the return value is a millisecond,

the granularity of the value depends on the underlying

operating system and may be larger. For example, many operating

systems measure time in units of tens of milliseconds.




	Double[] getTPS()

	Returns a list of size 3, containing the average TPS

over the last 1 minute, 5 minutes and 15 minutes.









9.1.3. math

The math namespace contains a series of common math operations.

Variables

The math namespace contains no variables.

Functions

Table 9.2: Supported Functions for the math namespace



	
	




	Double sqrt(Double value)

	Returns the correctly rounded positive square root

of a double




	Double abs(Double value)

	Returns the absolute value of a double value.

If the argument is not negative, the argument is returned.

If the argument is negative, the negation of the argument

is returned.




	Double pow(Double value, Double exponent)

	Returns the value of the first argument

raised to the power of the second argument.




	Int randomInt()

	Returns the next pseudorandom, uniformly

distributed Int value.




	Long randomLong()

	Returns the next pseudorandom, uniformly

distributed Long value.




	Float randomFloat()

	Returns the next pseudorandom, uniformly

distributed float value between 0.0 and 1.0.




	Double randomDouble()

	Returns the next pseudorandom, uniformly

distributed double value between 0.0 and 1.0.




	Double random(Double min, Double max)

	Returns the next pseudorandom, uniformly

distributed double value between min and max.




	Double sin(Double x)

	Returns the sin of a double  (takes degrees).



	Double cos(Double x)

	Returns the cos of a double (takes degrees).



	Double tan(Double x)

	Returns the tan of a double (takes degrees).



	Double arcsin(Double x)

	Returns the arcsin of a double (takes degrees).



	Double arccos(Double x)

	Returns the arccos of a double (takes degrees).



	Double arctan(Double x)

	Returns the arctan of a double (takes degrees).



	Double radsin(Double x)

	Returns the sin of a double (takes radians).



	Double radcos(Double x)

	Returns the cos of a double (takes radians).



	Double radtan(Double x)

	Returns the tan of a double (takes radians).



	Double radarcsin(Double x)

	Returns the arcsin of a double (takes radians).



	Double radarccos(Double x)

	Returns the arccos of a double (takes radians).



	Double radarctan(Double x)

	Returns the arctan of a double (takes radians).



	Double rad(Double x)

	Returns the double converted to radians (takes degrees).



	Double deg(Double x)

	Returns the double converted to degrees (takes radians).






Most of these functions have special cases with special arguments. View https://docs.oracle.com/javase/10/docs/api/java/lang/Math.html for these cases.



9.1.4. util

Variables

The util namespace contains no variables.

Functions

Supported Functions for the util namespace



	
	




	Boolean executeAndQuerySuccess(String command)

	Run an /execute Minecraft command and get the success value.



	Int executeAndQueryResult(String command)

	Run an /execute Minecraft command and get the result value.



	String randomUUID()

	Randomly generates a UUID.








9.1.5. format

Variables

The format namespace contains no variables.

Functions

Supported Functions for the format namespace



	
	




	formatDate(Long unixDateMillis, String format)

	Returns the converted unix date in the format specified by format.








9.1.6. timer

Variables

The timer namespace contains no variables.

Functions

Never store a Timer instance in a namespace variable. It will break on you silently. ALWAYS use timer::getCustomTimer().

Supported Functions for the timer namespace



	
	




	getMapTimer(Player player, String mapcode)

	Get a player’s timer for a map.



	getChallengeTimer(Player player, String challengecode)

	Get a player’s timer for a challenge.



	getCustomTimer(Player player, String tag)

	Gets a player’s custom timer. You can construct custom

timers by instantiating the timer::Timer type.




	getSpecialTimer(Player player, String tag)

	


	removeCustomTimer(Player player, String tag)

	Removes a custom timer.



	String formatTime(Long time).

	Format a time into a string.







Footnotes



            

          

      

      

    

  

    
      
          
            
  
9.2.1. Built-in Types


Contents


	Built-in Types


	String


	Constructors


	Operators


	Int & Long


	Float & Double


	Boolean


	Player


	Entity


	Block


	Item


	Spatial Types


	Location


	BlockLocation


	Position


	Vector3, BlockVector3, Vector2 and BlockVector2


	Region







9.2.2. String

A String represents plain text. Any piece of text surrounded with ” is considered a
String. Script operators that take exactly one string (such as @player, @bypass, @con-
sole, @command) do not require this (for backwards compatibility and less clutter).

@player Hey
@player "Hey"





Hey
"Hey"





A String will be null when it is referenced before initialization.



9.2.3. Constructors

A string can be created in one of two ways. The first one is using the String literal, and
the other is the String constructor. The string literal is any piece of text surrounded with
”. If the String needs to contain a ”, use the backslash to escape the double quotation
marks, as follows: ”This is escaped:”. Cool.”

The second way is through a constructor. Available constructors are:

Supported constructors for the String type



	
	




	String(String value)

	Clone a String.



	String(Int value)

	Get the textual value of an Int.



	String(Long value)

	Get the textual value of a Long.



	String(Float value)

	Get the textual value of a Float.



	String(Boolean value)

	Get the textual value of a Boolean.



	String(Double value)

	Get the textual value of a Double.



	String(Player value)

	Get the Player name in textual form.



	String(Entity value)

	Get the Entity UUID in textual form.



	String(Block value)

	Get the Block coordinates in textual form.



	String(Item value)

	Get the Item in textual form.






The String literal has an additional property for easier formatting. Within the quotation
marks it supports string formatting using {{ and }}. Any expression or value represented
within these double curly brackets will be evaluated and converted to a String. If any
other type remains within the curly brackets, the appropriate constructor is automatically
called to convert it into a String, if any. Admins can use these curly brackets in
chat to quickly evaluate an expression (for example to see the contents of a variable).
Do keep in mind that expressions in chat will require the local namespace specifiers to
specify the namespace, as there is no @using in chat.

For example:

@player {{Player("rickyboy320")}}





rickyboy320





This works because the String(Player) constructor defaults to the player name in textual
form. Additionally, script operators that take exactly one string do not take quotation
marks.

(If required, {{ and }} can be escaped like the quotation marks, using a backslash:)



9.2.4. Operators

Supported operators for the String type



	+

	String

	Concatenates two Strings together.



	Boolean

	Concatenates String and Boolean together, as if

the value were a string.

(”true” +true= ”truetrue”)




	Int, Double, Float, Long

	Concatenates String and the textual value of the

other together.




	Player

	Concatenates String and the name of the Player

together.




	Entity

	Concatenates String and the UUID of the Entity

together.




	Block

	Concatenates String and the coordinates of Block

together.




	Item

	Concatenates String and Item together.



	==

	String

	Checks for equality between Strings. This is

case-sensitive. For case-insensitive equality, use

.equalsIgnoreCase(). (Returns Boolean with the

result: true if equal).




	!=

	String

	Checks for inequality between Strings. (Returns

Boolean with the result: true if not equal).







Methods

Supported Methods for the String type



	
	




	Boolean contains(String sequence)

	Returns true if the String contains

sequence, false otherwise.




	Boolean equalsIgnoreCase(String other)

	Returns true if the String is equal

except for case to other, false otherwise.




	Int indexOf(String sequence)

	Returns the index the first occurrence

of sequence starts at. If the String does

not contain sequence, returns -1.




	String replace(String old, String new)

	Replaces all occurrences of old with

new in the String.




	String substring(Int start, Int end)

	Returns a substring starting (inclusive)

at start and ending (exclusive) at end.

Throws IndexOutOfBoundsException

when start or end are invalid indices

within the string. Throws

InvalidParameterException when*end*

is smaller than start.




	String toLowerCase()

	Returns the String in lowercase.



	String toUpperCase()

	Returns the String in uppercase.



	String trim()

	Returns the String with leading and

trailing whitespace omitted.









9.2.5. Int & Long

The Integer represents whole numbers (-1, 0, 1, 2, etc). Within a computing environment,
not all numbers can be represented.

The Java standard upholds a max Integer value of \(2^{31}`\) − 1 and a minimum Integer
value of \(− 2^{31}\). Any number outside of this range will overflow, resulting in a sign flip
and counting the opposite way. Roughly said: \(2^{31}\) −1 + 1 =− \(2^{31}\) (note that this is
unsupported and can change at any time).

If you need to represent a discrete number outside of this range, you can use Long
instead. Long has a max value of \(2^{63}\) −1 and a min value of \(− 2^{63}\).

Int and Long are recessive types. Any operation with a Float, Double or String will take
priority and converts the Int or Long to the correct type. The resulting type will always
be that of the operand. This is exactly why Integer division does not occur when using
a Double or Float as the operand.

An Int and Long will be 0 when it is referenced before initialization.

Constructors

Integers and Longs can be created in one of two ways. The first one is using the Int or
Long literal, and the other is a constructor.

The Int literal is any whole number: 1, 2, 4, 10, -5.

The Long literal is any whole number followed by L: 1L, 2L, 4L, 10L, -5L.

The second way is through a constructor. Available constructors are:

Supported constructors for the Int and Long type



	
	




	Int(Int value)

	Make an Int from another Int. (Clone operation)



	Int(Long value)

	Cast a Long down to an Int. (Precision loss)



	Int(Float value)

	Discard the decimals and convert a Float to Int.



	Int(Double value)

	Discard the decimals and convert a Double to Int.



	Int(String value)

	Attempt to parse a String into an Int. Only succeeds if the

entire String can be represented as an Int. Throws

NumberFormatException otherwise.




	Long(Int value)

	Upcast an Int to a Long.



	Long(Long value)

	Clone a Long.



	Long(Float value)

	Discard the decimals and convert a Float to Long.



	Long(Double value)

	Discard the decimals and convert a Double to Long.



	Long(String value)

	Attempt to parse a String into an Long. Only succeeds if the

entire String can be represented as a Long. Throws

NumberFormatException otherwise.







Operators

Supported operators for the Int and Long type



	+

	String

	Concatenates Int and String together, as if the

value were a string. (2 + ”2” = ”22”)




	Int, Double, Float, Long

	Adds the value to the numerical value of the

operand.




	
	




	Int, Double, Float, Long

	Subtracts the operand value from the value.



	*

	Int, Double, Float, Long

	Multiplies the value with the operand value.



	/

	Int, Long

	Integer divides the value and the operand.

(5/2 = 2)




	Double, Float

	Float divides the value and the operand.

(5/ 2 .0 = 2.5)




	%

	Int, Double, Float, Long

	The modulo operation. Finds the remainder after

division. (5 % 2 = 1)




	==

	Int, Double, Float, Long

	Returns whether this numerical value and the

other numerical value are exactly the same.




	!=

	Int, Double, Float, Long

	Returns whether this numerical value and the

other numerical value are not exactly the same.




	<

	Int, Double, Float, Long

	Returns whether this numerical value is less than

the other numerical value




	>

	Int, Double, Float, Long

	Returns whether this numerical value is more than

the other numerical value




	<=

	Int, Double, Float, Long

	Returns whether this numerical value is less than

or equal to the other numerical value




	>=

	Int, Double, Float, Long

	Returns whether this numerical value is more than

or equal to the other numerical value







Methods



	
	




	Int floor(Double x)

	Returns the floor of a double.



	Int ceiling(Double x)

	Returns the ceiling of a double.








9.2.6. Float & Double

The Float and Double represent decimal values (-0.1, 37.5, 42.0, etc.). Internally it uses
an interesting notation, a bit like the scientific notation to represent numbers. Because
of this way of representing the numbers (using a floating point), not all numbers are
represented as accurately. A Float and a Double can both represent a wider range of
values than the Integer or Long can, but not as precisely.

The Java standard upholds a max Float value of (2− \(2^{−^23}`\) )· \(2^{127}\) and a minimum

(positive) Float value of \(2^{149}\). All numbers that can be represented positively can also
be represented negatively (including 0!). Do note that not all numbers in the range of
the min and max value can be represented, and that there is more than often a case of
precision loss.

The Double type can represent numbers more accurately, maintaining a maximum value
of (2− \(2^{-52}\) )· \(2^{1023}\) and a minimum value of \(2^{-1074}\). It can represent numbers more
accurately than a Float, but can still have precision loss. In most cases this should not
pose a problem.

On top of overflowing, much like the Integer and Long types, the Float and Double
can also underflow. This occurs when it tries to represent a number between 0 and the
minimum positive (or negative) value. In most cases this should not be a problem.

An Float and Double will be 0.0 when it is referenced before initialization.

Constructors

Floats and Doubles can be created in one of two ways. The first one is using the Float
or Double literal, and the other is a constructor.

The Float literal is any decimal number: 1.0, 2.0, 4.0, 10.2342, -5.12.

The Double literal is any number followed by D: 1D, 2D, 4.0D, 10.2342D, -5.12D.

The second way is through a constructor. Available constructors are:

Supported constructors for the Float and Double type



	
	




	Float(Int value)

	Cast an Int to a Float.



	Float(Long value)

	Cast a Long down to an Int. (Precision loss)



	Float(Float value)

	Clone a Float.



	Float(Double value)

	Cast a Double to a Float. (Precision loss)



	Float(String value)

	Attempt to parse a String into an Float. Only succeeds if

the entire String can be represented as a Float. Throws

NumberFormatException otherwise.




	Double(Int value)

	Cast an Int to a Double.



	Double(Long value)

	Cast a Long to a Double.



	Double(Float value)

	Upcast a Float to a Double.



	Double(Double value)

	Clone a Double.



	Double(String value)

	Attempt to parse a String into an Double. Only succeeds if

the entire String can be represented as a Double. Throws

NumberFormatException otherwise.







Operators

Supported operators for the Float and Double type



	+

	String

	Concatenates Float and String together, as if the

value were a string. (2.0 + ”2” = ”2.02”)




	Int, Double, Float, Long

	Adds the value to the numerical value of the

operand.




	
	




	Int, Double, Float, Long

	Subtracts the operand value from the value.



	*

	Int, Double, Float, Long

	Multiplies the value with the operand value.



	/

	Int, Double, Float, Long

	Divides the value and the operand. (5. 0 /2 = 2.5)



	%

	Int, Double, Float, Long

	The modulo operation. Finds the remainder after

division. (0.5 % 0.2 = 0.1)




	==

	Int, Double, Float, Long

	Returns whether this numerical value and the

other numerical value are exactly the same.




	!=

	Int, Double, Float, Long

	Returns whether this numerical value and the

other numerical value are not exactly the same.




	<

	Int, Double, Float, Long

	Returns whether this numerical value is less than

the other numerical value




	>

	Int, Double, Float, Long

	Returns whether this numerical value is more than

the other numerical value




	<=

	Int, Double, Float, Long

	Returns whether this numerical value is less than

or equal to the other numerical value




	>=

	Int, Double, Float, Long

	Returns whether this numerical value is more than

or equal to the other numerical value







Methods

There are no methods contained in the Float and Double type.



9.2.7. Boolean

The Boolean can either represent true or false. It is primarily used in branches (such
as @if, @elseif) or conditions. Booleans contain some additional operators to perform
boolean logic with.

A Boolean will be false when it is referenced before initialization.

Constructors

Booleans can be created in one of two ways. The first one is using the Boolean literal,
and the other is a constructor.

The Boolean literal is either true or false.

The second way is through a constructor. Available constructors are:

Supported constructors for the Boolean type



	
	




	Boolean(Boolean)

	Copy a Boolean.



	Boolean(String)

	Parse true or false in string format to a boolean. Defaults to

false.







Operators

Supported operators for the Boolean type



	
	
	




	+

	String

	Concatenates Boolean and String together, as if the value were a

string. (true+ ”true” = ”truetrue”)




	!

	(Prefix)

	Negates the boolean value. (!true = false)



	&&

	Boolean

	ANDs the booleans together. Results in true only if both booleans

are true. (true && true = true, true && false = false,

false && false = false)




	||

	Boolean

	ORs the booleans. Results in true when either boolean is true.

(true || true = true, true || false = true, false || false= false)




	==

	Boolean

	Returns whether two Boolean values are the same (both true, or

both false).




	!=

	Boolean

	Returns whether two Boolean values are not the same.






The logical operators && and||are short-circuiting. This means that when reading
from left to right, one of the operands causes the result to always be true or false, the
other operand is not evaluated. For example the expression

@if x != null && x.contains("blue")





will not throw a NullPointerException even if x is null, because the if statement short
circuits before it reaches the substring expression.

Methods

There are no methods contained in the Boolean type.



9.2.8. Player

The Player represents an (online) Minecraft Player. There are a multitude of things
you can accomplish through supported methods that are generally not directly available
through commands.

A Player will be null when it is referenced before initialization.

Constructors

Table 9.12: Supported constructors for the Player type



	
	




	Player(String value)

	Construct a player from their name or

UUID. Null if the player does not exist.




	Player(Int x, Int y, Int z, String world)

	Find a player at these coordinates in the

passed world. Null if the player does not

exist. In the scenario that multiple Players

are in the same location,

nondeterministically returns one Player at

that location.




	Player(String name, Player visibleTo).

	Construct a player from their name.

It will return null if a player was found but is not

visible to visibleTo.







Operators

Table 9.13: Supported operators for the Player type



	
	
	




	+

	String

	Concatenates the name of Player and String together.



	==

	Player

	Checks for equality between Players. (Returns true when the players

are the same player).




	!=

	Player

	Checks for inequality between Players. (Returns true when the

players are not the same player).







Methods

Table 9.14: Supported Methods for the Player type







	Float getFallDistance()

	Returns the distance this entity has fallen.



	Int getFireTicks()

	Returns the entity’s current fire ticks (ticks before

the entity stops being on fire).




	setFireTicks(Int ticks)

	Sets the entity’s current fire ticks (ticks before the

entity stops being on fire).




	Double getX()

	Gets the entity’s current x position.



	Double getY()

	Gets the entity’s current y position.



	Double getZ()

	Gets the entity’s current z position.



	Float getYaw()

	Gets the entity’s current rotation around the y axis.



	Float getPitch()

	Gets the entity’s current rotation around the x axis.



	String getWorld()

	Gets the current world this entity resides in.



	Boolean isDead()

	Returns true if this entity has been marked for

removal.




	Boolean isFlying()

	Checks to see if this player is currently flying or not.



	Boolean isOnGround()

	Returns true if the entity is supported by a block.

This value is a state updated by the server and is

not recalculated unless the entity moves.




	Boolean isSneaking()

	Returns if the player is in sneak mode.



	Boolean isSprinting()

	Gets whether the player is sprinting or not.



	giveExp(Int amount)

	Gives the player the amount of experience specified.



	Float getExp()

	Gets the players current experience points towards

the next level.




	setExp(Float exp)

	Sets the players current experience points towards

the next level.




	giveExpLevels(Int amount)

	Gives the player the amount of experience levels

specified. Levels can be taken by specifying a

negative amount.




	Float getLevel()

	Gets the players current experience level.



	setLevel(Int level)

	Sets the players current experience level.

damage(Double amount) Deals the given amount of damage to

this entity.




	Double getHealth()

	Gets the entity’s health from 0 to

getMaxHealth(), where 0 is dead.




	setHealth(Double health)

	Sets the entity’s health from 0 to

getMaxHealth(), where 0 is dead.

Throws IllegalArgumentException if

the health is <0 or>
getMaxHealth().




	Double getMaxHealth()

	Gets the maximum health this entity

has.




	setMaxHealth()

	Sets the maximum health this entity

has. If the health of the entity is

above the value provided it will be

clamped to the max value. Only sets

the ’base’ max health value, any

modifiers changing this value (potions,

etc) will applyafterthis value. The

value returned by getMaxHealth may

deviate from the value set here.




	Float getFoodLevels()

	Gets the players current food level.



	setFoodLevel(Int value)

	Sets the players current food level.



	Float getSaturation()

	Gets the players current saturation

level. Saturation is a buffer for food

level. Your food level will not drop if

you are saturated > 0.




	setSaturation(Float value)

	Sets the players current saturation

level.




	Boolean isInsideVehicle()

	Returns whether this entity is inside a
vehicle.



	Boolean leaveVehicle()

	Leave the current vehicle. If the entity

is currently in a vehicle (and is

removed from it), true will be

returned, otherwise false will be

returned.




	closeInventory()

	Force-closes the currently open

inventory view for this player, if any.




	Long getTimePlayed()

	Gets the player’s playtime on the
server in milliseconds.



	String getLocale()

	Gets the player’s current locale. The

value of the locale String is not

defined properly. The vanilla

Minecraft client will use lowercase

language / country pairs separated by

an underscore, but custom resource

packs may use any format they wish.




	String getUniqueId()

	Gets the UUID of the entity (in string

format).




	Boolean isOnline()

	Checks if this player is currently

online.




	Boolean isOp()

	Checks if this Player is a server

operator.




	setResourcePack(String url, String hash)

	Request that the player’s client

downloads and switches resource

packs.




	Item getItem(Int slot)

	Returns the Item found in the slot at the given

index.




	Item getItemInMainHand()

	Gets a copy of the item the player is currently

holding in their main hand.




	Item getItemInOffHand()

	Gets a copy of the item the player is currently

holding in their off hand.




	Item getBoots()

	Return the Item from the boots slot.



	Item getLeggings()

	Return the Item from the leg slot.



	Item getChestplate()

	Return the Item from the chestplate slot.



	Item getHelmet()

	Return the Item from the helmet slot.



	setItem(Int slot, Item item)

	Stores the Item at the given index of the

inventory. Indexes 0 through 8 refer to the

hotbar. 9 through 35 refer to the main

inventory, counting up from 9 at the top left

corner of the inventory, moving to the right,

and moving to the row below it back on the

left side when it reaches the end of the row. It

follows the same path in the inventory like you

would read a book. Indexes 36 through 39

refer to the armor slots. Though you can set

armor with this method using these indexes,

you are encouraged to use the provided

methods for those slots. If you attempt to use

this method with an index less than 0 or

greater than 39, an ArrayIndexOutOfBounds

exception will be thrown.




	setItemInMainHand(Item item)

	Sets the item the player is holding in their

main hand.




	setItemInOffHand(Item item)

	Sets the item the player is holding in their off

hand.




	setBoots(Item item)

	Put the given Item into the boots slot.

does not check if the Item is a boots.

setLeggings(Item item) Put the given Item into the leg slot. This does

not check if the Item is a pair of leggings.




	setChestplate(Item item)

	Put the given Item into the chestplate slot.

This does not check if the Item is a chestplate.

setHelmet(Item item) Put the given Item into the helmet slot. This

does not check if the Item is a helmet.




	Boolean isPlayingChallenge()

	Returns whether the

player is playing a

challenge.




	String getCurrentChallenge()

	Returns the challenge

the player is playing.

Returns null when

player is not playing any

challenge.




	Int getChallengePoints()

	Returns the amount of

challenge points the

player has.




	Int getHexaRecord()

	Returns the stage the

player reached in hexa.




	Boolean hasCompletedChallenge(String challengetag)

	Returns whether the

player has completed the

specified challenge.




	Long getChallengeTime()

	Returns the current time

the player has spent in

the challenge. Returns - 1 if the player

is not in a challenge.




	Boolean isPlayingMap()

	Returns whether the

player is playing a map.




	String getCurrentCheckpoint()

	Returns the checkpoint

the player has. Returns

null when no checkpoint

in the current checkpoint

mode is set. Returns the

checkpoint from the

current checkpoint mode

(HC or FFA).




	Int getPoints()

	Returns the amount of

FFA points the player

has.




	Int getSpeedrunScore()

	Returns the speedrun score of the player.



	Boolean hasCompletedMap(String maptag)

	Returns whether the

player has completed the

specified map.




	Long getMapTime()

	Returns the current time

the player has spent in

the map.




	Int getAttempts()

	Get the amount of times

a player has hit any

starting checkpoint sign.




	String sendMessage(String message)

	Sends a raw message directly to a player.



	String getBedLocationWorld()

	Returns a String containing the world where

the player has set their bed.




	Int countItem(String id)

	Returns the number of items with Minecraft ID id

that the player has in their inventory.




	String getName()

	Returns the player’s Minecraft username.



	String getDisplayName()

	Returns the player’s display name on the server (e.g. nickname

given by /nick)




	Location getLocation()

	Returns the location of a player. Stringifies to “x y z world”.



	teleport(Position position)

	Teleports a player to position.



	canSee(Player player)

	Returns if the player can see the target player (i.e., /hide and /block cause it to fail).



	String getClickedBlockFace()​

	Returns the clicked block face of the player (e.g. EAST, UP, SOUTH).

Used in interact scripts.




	String getTargetBlockFace(Int distance)

	Gets the block face of the block that the player is looking

at (must be within distance). Max distance is 120.




	Block getTargetBlock(Int distance)

	Returns the Block type of the block that the player is looking

at (must be within distance). Max distance is 120.




	Entity getTargetEntity(Int distance)

	Returns the Entity type of the entity that the player is

targeting (must be within distance). Max distance is 120.




	Void setGravity(Boolean gravity)

	Sets gravity to be true or false for the player.



	Boolean hasGravity()

	Returns whether the player has their gravity true or false.



	Boolean isGliding()

	Returns whether the player is gliding.



	String getPlayerWeather()

	Returns the type of weather the player is currently experiencing.



	Void resetPlayerTime()

	Resets the player’s time to be in sync with the server.



	Boolean dropItem(Boolean dropAll)

	Drops the item the player is holding. If dropAll is true,

then the player drops the whole stack.









9.2.9. Entity

An Entity is a move-able or dynamic object in the Minecraft world. Animals and mon-
sters are Entities, but also arrows, item frames and paintings.

An Entity will be null when it is referenced before initialization.

Constructors

Table 9.18: Supported constructors for the Entity type







	Entity(String uuid)

	Construct an entity from its UUID.

Returns null if it does not exist.




	Entity(Int x, Int y, Int z, String world)

	Find an entity in the passed world at these

coordinates. Returns null if it does not

exist. In the scenario that multiple entities

are in the same location,

nondeterministically returns any entity.







Operators

Table 9.19: Supported operators for the Entity type








	+

	String

	Concatenates the UUID of Entity and String together.



	==

	Entity

	Checks for equality between Entities. (Returns true when the entities

are the same entity).




	!=

	Entity

	Checks for inequality between Entities. (Returns true when the

entities are not the same entity).







Methods

Table 9.20: Supported Methods for the Entity type







	String getEntityType()

	Gets the entity’s type. Actual value returned is a

’magic value’ and can change at any spigot or bukkit

update.




	Double getX()

	Gets the entity’s current x position.



	Double getY()

	Gets the entity’s current y position.



	Double getZ()

	Gets the entity’s current z position.



	Float getYaw()

	Gets the entity’s current rotation around the y axis.



	Float getPitch()

	Gets the entity’s current rotation around the x axis.



	Double getVelocityX()

	Gets the entity’s current velocity in the x direction.



	Double getVelocityY()

	Gets the entity’s current velocity in the x direction.



	Double getVelocityZ()

	Gets the entity’s current velocity in the x direction.



	String getWorld()

	Gets the current world this entity resides in.



	Boolean isDead()

	Returns true if this entity has been marked for removal.



	Boolean isOnGround()

	Returns true if the entity is supported by a block. This

value is a state updated by the server and is not

recalculated unless the entity moves.




	damage(Double amount)

	Deals the given amount of damage to this entity.



	Double getHealth()

	Gets the entity’s health from 0 to getMaxHealth(),

where 0 is dead.




	setHealth(Double health)

	Sets the entity’s health from 0 to getMaxHealth(),

where 0 is dead. Throws IllegalArgumentException if

the health is ¡ 0 or ¿ getMaxHealth().




	Double getMaxHealth()

	Gets the maximum health this entity has.



	setMaxHealth()

	Sets the maximum health this entity has. If the health

of the entity is above the value provided it will be set

to that value.




	String getUniqueId()

	Gets the UUID of the entity (in string format).



	Location getLocation()

	Returns the location of a entity. Stringifies to “x y z world”.



	teleport(Position position)

	Teleports an entity to position.



	Boolean addPassenger(Entity passenger)

	Adds a passenger to a vehicle. Returns false if

could not be done for whatever reason.




	Void ejectPassenger(Entity passenger)

	Ejects any passenger from the vehicle.








9.2.10. Block

A Block represents a Block in the Minecraft world. Any valid block (within reasonable
bounds, 0≤y≤255) can be represented, whether it is an empty (air) block, liquid, or
a solid block.

A Block will be null when it is referenced before initialization.

Constructors

Table 9.21: Supported constructors for the Block type



	
	




	Block(Int x, Int y, Int z, String world)

	Get the block at these coordinates in the given world.






Operators

Table 9.22: Supported operators for the Block type



	
	
	




	+

	String

	Concatenates the coordinates of Block and String together.



	==

	Block

	Checks for equality between Blocks. (Returns true when the blocks

are the same block).




	!=

	Block

	Checks for inequality between Blocks. (Returns true when the blocks

are not the same block).







Methods

Table 9.23: Supported Methods for the Block type







	Int getBlockPower()

	Returns the Redstone power

being provided to this block.




	Int getLightLevel(()

	Returns the amount of light

at this block.




	Int getLightFromBlocks()

	Returns the amount of light

at this block from nearby

blocks.




	Int getLightFromSky()

	Returns the amount of light

at this block from the sky.




	Block getRelative(Int modX, Int modY, Int modZ)

	Gets the block at the given

offsets.




	String getBlockType()

	Gets the type of this block.

Actual value returned is a

’magic value’ and can change

at any spigot or bukkit

update.




	Int getX()

	Returns the x-coordinate of

this block.




	Int getY()

	Returns the y-coordinate of

this block.




	Int getZ()

	Returns the z-coordinate of

this block.




	String getWorld()

	Returns the world where this

block resides in.




	Boolean isBlockIndirectlyPowered()

	Returns true if the block is

being indirectly powered by

Redstone.




	Boolean isBlockPowered()

	Returns true if the block is

being powered by Redstone.




	Boolean isEmpty()

	Returns true if this block is

Air.




	Boolean isLiquid()

	Returns true if this block is

liquid.




	BlockLocation getLocation()

	Returns the location of a block. Stringifies to “x y z world”.








9.2.11. Item

An Item represents an Item in the Minecraft world. Any valid item can be represented,
along with the stack size.

An Item will be null when it is referenced before initialization.

Constructors

Table 9.24: Supported constructors for the Item type



	
	




	Item(String item, Int amount)

	Create an item from the passed name with a stack

size of amount. Throws

MaterialNotFoundException when passed an

invalid name.







Operators

Table 9.25: Supported operators for the Item type



	
	
	




	+

	String

	Concatenates the Item and String together.



	==

	Item

	Checks for equality between Items. (Returns true when the items

match and the stack size is equal).




	!=

	Item

	Checks for inequality between Items. (Returns true when the blocks
are not the same, and/or the stack size is unequal).






Methods

Table 9.26: Supported Methods for the Item type







	Int getAmount()

	Gets the amount of items in this stack.



	String getItemType()

	Gets the type of this item.



	Int getMaxStackSize()

	Get the maximum stacksize for the material hold in

this ItemStack. (Returns -1 if it has no idea).




	setAmount(Int amount)

	Sets the amount of items in this stack.



	setItemType(String item)

	Sets the type of this item. Note that in doing so

you will reset the extra data for this stack as well.

Throws MaterialNotFoundException when passed

an invalid name.




	Boolean isSimilar(Item item)

	Returns whether two items are equal, but does not

consider stack size (amount).









9.2.12. Spatial Types

Script update 2.2.0 brought spatial built-in types including Location and BlockLocation, to represent points in the Minecraft world.



9.2.13. Location

Location is used to represent a position in a world, especially one that can be occupied by an entity. This is why it uses Doubles (since they can be on any part of a block).

To obtain a Location from a Player or Entity, call getLocation().  Stringifies to “x y z world”. This allows you to easily do something

Constructors

Supported constructors for the Location type:







	Location(Double x, Double y, Double z, String world)

	Creates a Location from the passed in coordinates and world.



	Location(Vector3, String world)

	Creates a Location from the passed in vector and world.






Methods

Supported operators for the Location type:







	BlockLocation asBlockLocation()

	Converts to a BlockLocation type.



	Vector2 asVector2()

	Converts to a Vector2 type.



	Vector3 asVector3().

	Converts to a Vector3 type.



	Region[] Location getRegions()

	Get all regions that intersect the Location.








9.2.14. BlockLocation

BlockLocation is used to represent the position of a block in the world, or any other time you want to keep the position aligned to the block grid. This uses Ints instead, since you can only set which block it is (if you want to choose the part of the block, use Location).

To obtain a BlockLocation of a Block, call getLocation(). Stringifies to “x y z world”. This allows you to easily do something like @bypass tp {{loc}}.

Constructors

Supported constructors for the BlockLocation type:







	BlockLocation(Int x, Int y, Int z, String world)

	Creates a BlockLocation from the passed in coordinates and world.



	BlockLocation(BlockVector3, String world)

	Creates a BlockLocation from the passed in vector and world.






Methods

Supported operators for the BlockLocation type:







	BlockLocation set(String block)

	Change the block at that location to block.



	Location asLocation()

	Converts to a Location type.



	Vector2 asVector2()

	Converts to a Vector2 type.



	Vector3 asVector3().

	Converts to a Vector3 type.



	Region[] BlockLocation getRegions()

	Get all regions that intersect the BlockLocation.








9.2.15. Position

The Position type is mostly the same as Location, except it also has Float yaw, Float pitch.

Constructors

Supported constructors for the BlockLocation type:







	Position(Double x, Double y, Double z, Float yaw, Float pitch, String world)

	Creates a position with the given coordinates, yaw, pitch, and world.



	Position(Location location, Float yaw, Float pitch)

	Creates a position with the given Location object, yaw, and pitch.






Methods

Supported operators for the BlockLocation type:







	getYaw()

	Returns the yaw.



	getPitch()

	Returns the pitch.



	Location asLocation()

	Converts to a Location type.








9.2.16. Vector3, BlockVector3, Vector2 and BlockVector2

Vector3 and BlockVector3 are intended represent abstract locations in space (in the XYZ field). Vector2 and BlockVector2 are intended to represent abstract locations on the XZ plane (useful if you don’t care about the y-value of something). They’re also just wrappers for some vector types I found in a library somewhere. You can use them to represent other things if you wish.

Like Location vs BlockLocation, BlockVector3 and BlockVector2 are aligned to the block grid while Vector3 and Vector2 are not. Note none of the vectors care about the world.

Constructors

Supported constructors for the Vectors:







	Vector3(Double x, Double y, Double z)

	Constructor for Vector3



	BlockVector3(Int x, Int y, Int z)

	Constructor for BlockVector3



	Vector2(Double x, Double z)

	Constructor for Vector2



	BlockVector2(Int x, Int y, Int z)

	Constructor for BlockVector2






Methods

Supported operators for the BlockLocation type:







	length()

	Returns the length of the vector



	distance(Vector otherVector)

	Returns the distance between two vectors. Note

the vectors must be of the same type.




	containedWithin(Vector min, Vector max)

	Returns whether a vector is within the bounding box create by two other vectors.

Note the vectors must be of the same type.







Vectors also stringify into “x y z” or “x y” (BlockVector3(4, 12, 17) -> “4 12 17”, Vector2(8, 1) -> “8.0 1.0”). This allows you to do stuff like @bypass tp {{vec}}. However as mentioned previously, you can also do Player.teleport(Position) or Entity.teleport(Position).

You can convert them into other types as well. Note you can’t go Vector3 <-> BlockVector2 or Vector2 <-> BlockVector3.



9.2.17. Region

The region type serves as a wrapper for WorldGuard regions. You can get Regions to represent existing regions in the world, or create your own on the fly.

There’s two ways to obtain a Region. You can do Region(String id, String world) to look up an existing region, and create a wrapper around that (returning null if it doesn’t exist). Alternatively, you can construct a Region by giving it some points and a world. If you give it two sets of coordinates (whether it be through integers or BlocKVectors), you’ll get a cuboid region. If you give it a list of BlockVector2s, you’ll get a polygonal region.

You also have the option when construction a region to give it an id - if you don’t, it will be considered an “anonymous region” and be given a random id (please don’t rely on what the id is). Note that all regions constructed through scripts are transient and not accessible by WorldGuard, the server, any other part of Minr, or any other plugin. They only exist within the confines of scripts. This means you won’t see them if you use the spider eye or /region info, nor will any flags or restrictions applied to them be enforced. Note you can’t obtain a transient region with Region(String id, String world), even if you give it an id.

You can check if a region contains a Player, BlockVector2, BlockVector3, BlockLocation, a coordinate (Int x, Int y, Int z, String world) or any BlockVector2 in a list. The first one is the most important, since we now finally have a native way to check if a player is in a region for @prompt scripts.

You can check if a region contains a player with region.containsPlayer(). You can use regions constructed on the fly with Region(min, max, world).containsPlayer(player) (where min and max are BlockVector3s), or Region(minX, minY, minZ, maxX, maxY, maxZ, world).containsPlayer(player). You could also use an existing region.

Methods

Supported operators for the Region type:







	Boolean containsPlayer()

	Check if a region contains a player



	Player[] getPlayersInside()

	Returns all players currently inside a region



	BlockLocation getMinimumPoint()

	Returns the minimum point of a region.



	BlockLocation getMaximumPoint()

	Returns the maximum point of a region.



	Player[] getMemberPlayers()

	Returns members of a region.



	String[] getMemberGroups()

	Returns the member groups of a region.



	Player[] getOwningPlayers()

	Returns the owners of the region.



	String[] getOwningGroups()

	Returns the owner groups of a region.






Finally, all Area scripts now have an additional parameter - Region region. This will be a Region type representing the region that the script is tied to. This allows a script to figure out where it is being called from.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
Contents


	Syntax


	Define


	Var


	String Formatting


	Expression


	Time






9.3.1. Syntax



9.3.2. Define

The syntax for the define operator and command is as follows:

[qualifiers [...]] <Type> <name> [= expression]





qualifiers can be any amount of qualifiers handled in Qualifiers. These always precede
the rest of the definition and are always in lowercase. The qualifiers are keywords and
can therefore not be used as a variable, function or type name. Qualifiers only work on
persistent variables and can therefore not be used in scripts.

Type is the type of the variable, which always starts with an uppercase character. This
makes it easier to distinguish the type from the variable and qualifiers.

name can be any word that is not a keyword or literal. The name can consist of the
following characters: a-z, A-Z, 0-9,. The name cannot start with a number, , or an
uppercase character.

expression has to be a valid expression resulting in a value of Type. See Expression.



9.3.3. Var

The syntax for the var operator and command is as follows:

[name] <op> <expression>





name can be any predefined variable or field that is available.

op can be either ’=’ or any of the numerical operators followed by ’=’. The former case
sets the variable to the result of the expression, the latter case performs the operation
on the variable itself and the expression, and saves the result in the variable. Available
numerical operators are: =, +=, -=, *=, /=, %=.

expression  has to be a valid expression resulting in a value of the correct type. See
Expression.



9.3.4. String Formatting

The String literal supports a formatting context in which all expressions are allowed.
This is useful for both debugging and readability.

Within any String literal, an expression is started with a ’{{’ and closed with a ’}}’.
The resulting value is automatically converted to a String. If this is not possible, it will
result in an error.



9.3.5. Expression

The expression syntax allows any variables, literals and functions to be used. Variables
are just referred to by their name. Literals follow the syntax rules of their type. Functions
are always immediately followed by an opening parenthesis ’(’, after which the
parameters come, separated by a comma, and closes with a ’)’. Fields and methods are
accessed from an instance by using a ’.’.

To chain variables, results of functions and literals, operators are required.

The resulting type is decided by the last remaining object after all sub-expressions have
been evaluated, and has to fit the context. If any sub-expressions can not perform an
operation with an operator, or be assigned to a given type, the expression fails and an
error is thrown.



9.3.6. Time

Some operators and commands take a time parameter. The parameter is the same as in
a temporary /ban command:<amount>[s/m/h/d/w].

amount decides the amount of the unit that is used.

The unit can either be blank, s, m, h, d, or w. A blank unit means ticks, that is 1/20 of
a second. s means seconds, m means minutes, h means hours, d means days, w means
weeks.

Thus 5d means 5 days, 10 means 10 ticks, 7h means 7 hours, and so on.


Footnotes



            

          

      

      

    

  

    
      
          
            
  




9.4.1. Namespace

The parent command is /namespace. All subcommands in the table below will start
with this parent command.

Table 9.27: Namespace Commands







	define<name>

	Define a new namespace with label/name name.



	remove<name>

	Delete a namespace and all variables and functions attached to it.



	info<name>

	View metadata about a namespace.



	variables <name>

	View the definitions and current values of variables in this

namespace.




	functions <name>

	View the definitions of the functions in this namespace.



	types<name>

	View the types defined in this namespace








9.4.2. Variable

The parent command is /variable. Possible aliases: /var. All subcommands in the table
below will start with this parent command.

Table 9.28: Variable Commands







	define<namespace> [qualifiers […]] <Type> <name> [=expression]

	Define a new variable with optional qualifiers, a given

name and Type and a possible initial value, supplied by

the expression. The expression should resolve to the Type

parameter.




	remove <namespace> <name>

	Delete a variable definition.



	set<namespace> <name> <= expression>

	Set a variable to the result of an expression. The

expression should resolve to the Type of the variable, or

null.




	info<name>

	View metadata about a variable.








9.4.3. Function

The parent command is /function. Aliases: /func. All subcommands in the table below
will start with this parent command.

Table 9.29: Function Commands







	define<namespace> [ReturnType] <functionName([Type name[, …]])>

	Define a function in namespace returning a value of the

typeReturnType(Void if empty). The function has the

name functionName and takes any amount of

parameters, defined in sets ofType name. Type defines

the type of the parameter and name defines the name on

which the variable can be addressed. Fails when a

function with functionName already exists in the

namespace.




	remove<namespace> <functionName>

	Delete a function definition in a given namespace. This

removes the attached scripts.




	redefine<namespace> [ReturnType] <functionName([Type name[, …]])>

	Redefine a function. This keeps the associated script, but

allows changing the calling parameters or the return type.

Will fail when functionName has not been defined yet.




	info <name>

	View metadata about a function.








9.4.4. User Types

The parent command is /type. All subcommands in the table below start with this
parent command. The method and field subcommands have their own tables.

Table 9.30: Type Commands







	define <namespace> <Type>

	Define a new Type in the namespace. Should start with an

uppercase character, contain no spaces and only alphanumeric

characters.




	remove <namespace> <Type>

	Deletes a Type, with its associated fields and methods.



	info <namespace> <Type>

	View metadata about a type.



	fields <namespace> <Type>

	Display a list of all fields in this Type.



	methods <namespace> <Type>

	Displays a list of all methods in this Type. Since built-in types

are part of every namespace, a built-in type can be inspected

too.




	constructors <namespace> <Type>

	Displays a list of all constructors in this Type. Since built-in

types are part of every namespace, a built-in type can be

inspected too.









9.4.5. Fields

The parent command is /type field. All subcommands in this table start with this parent
command.

Table 9.31: Field Commands







	define<namespace> <Type> <Type> <name>

	Define a field forType. The field has the given Type and

name. Fails when a field with the same name already exists

in the type.




	remove<namespace> <Type> <name>

	Delete a field in Type with the given name.



	info<namespace> <Type> <name>

	View metadata about a field.








9.4.6. Methods

The parent command is /type method. All subcommands in this table start with this
parent command.

Table 9.32: Method Commands







	define<namespace> <Type> <ReturnType> methodName([Type name[, …]])>

	Define a method in Type returning a value of the type

ReturnType. The method has the name methodName

and takes the specified amount of parameters, defined

in sets ofType name. Type defines the type of the

parameter and name defines the name on which the

variable can be addressed. Fails when a function with

methodName already exists in the type.




	remove<namespace> <Type> <methodName>

	Delete a method definition in a given Type. This

removes the attached scripts.




	redefine<namespace> <Type>[ReturnType] <methodName([Type name[, …]])>

	Redefine a method. This keeps the associated script,

but allows to change the calling parameters or the

return type. Will fail when methodName has not been

defined yet.




	info<name>

	View metadata about a method.








9.4.7. Constructors

The parent command is /type constructor. All subcommands in this table start with
this parent command.

Table 9.33: Constructor Commands







	define <namespace> Type([Type name[, …]])

	Define a constructor forType. The constructor takes the

specified amount of parameters, defined in sets ofType name.

Type defines the type of the parameter and name defines the

name on which the variable can be addressed. Fails when a

constructor with the same parameter signature already exists in

the type.




	remove <namespace> Type([Type name[, …]])

	Delete the constructor with the given parameter signature in the

associated Type. This removes the attached scripts.




	info <namespace> Type([Type name[, …]])

	View metadata about a constructor.








9.4.8. Script

The script command has the following syntax:

/script <action> <type> [typeparameters] [actionparameters]





action and[actionparameters] are defined in Supported actions for script commands.
type and[typeparameters] are defined in Supported Script Types. Script operators that
can be used in script lines are defined in Script Operators.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
9.5.1. Scripts


Contents


	Scripts


	Script Actions


	Script Types


	Script Operators







9.5.2. Script Actions

Table 9.34: Supported actions for script commands







	create … [line]

	Add a line to the end of the script. Whenlineis passed, it adds

the line on the given line number instead.




	view …

	View the lines of the script in chat.



	remove … [line]

	Remove the entire script or a given line.



	info …

	List metadata and comments about the script.



	export …

	Export the script to hastebin. (See Hastebin (link) for more

information).




	import …<id>

	Import the script from hastebin.idis the identifier of your

hastebin script, and must be passed. (See Hastebin (link) for more

information).




	copy

	Copies all scripts in a WorldEdit selected area to the players

clipboard, relative to the position of the player. Scripts in the

copied area that are removed or not present upon pasting, will

not be pasted.




	wipe <type>

	Removes all scripts of the given script type in a WorldEdit

selected area.




	paste <type>

	Pastes all scripts of the given script type relative to the new

location. (Offsets are calculated from the copy position and then

reapplied from the new position).




	count <type>

	Counts the amount of scripts of the given script type in the

WorldEdit selected area.




	undo

	Undos the last script creation, removal, edit, import or export.

Currently not supported for any commands involving Functions,

Constructors or Methods. Stores up to 10 actions.









9.5.3. Script Types

Table 9.35: Supported Script types







	interact [x y z] [world]

	Binds to a script triggered

when the player interacts

with a block. Optionally

attached to x, y, z in world.




	walk [x y z] [world]

	Binds to a script triggered

when the player walks over a

block. Optionally attached

to x, y, z in world.




	ground [x y z] [world]

	Binds to a script triggered

when the player is on the

ground. Optionally attached

to x, y, z in world.




	entity [uuid] [world]

	Binds to a script triggered

when the player interacts

with an entity. Script is

removed once the entity dies.

Optionally attached to a

specific UUID in world.




	area <region>

	Binds to a script triggered

once when a player enters an

area. Attached to a

WorldGuard region.




	function<namespace> <function>

	Binds to a function explicitly

called from within other

scripts or expressions.




	method <namespace> <Type> <method>

	Binds to a method explicitly

called with an instance of

Type.




	constructor<namespace> <Constructor Signature>

	Binds to a constructor

explicitly called when

constructing an instance.

Constructor Signatureserves

to distinguish multiple

constructors with different

signatures.









9.5.4. Script Operators

Table 9.36: Command Script operators







	@command<command>

	Execute a command as the player. Can only execute the

commands the player can also execute.




	@bypass<command>

	Execute a command as the player in an elevated

position. Allows the execution of most admin

commands.




	@console<command>

	Execute a command as the console. Allows the

execution of all admin commands, but not those relative

to the player.







Table 9.37: Chat Script operators







	@chatscript <group> <time> <function>

	Binds a function to the following

@player message. When the message is

clicked in chat, it will be executed.

Chatscript runs out whentimeruns

out, or if a chatscript ofgroupwas

already clicked.




	@player<message>

	Sends a message to the player in chat.

Supports color codes prefixed with the

character ’&’.




	@prompt<time> <variable>[message]

	Stores the next message the player

types in chat in the variable. Prompt

ends when time runs out, with the

given optional message. Defaults to

Prompt expired. Message supports

color codes with &.







Table 9.38: Variable Script operators







	@using<namespace>

	Sets the namespace for the following

lines. The script can then use the

variables and functions from the

namespace. Note that the variables in

the local namespace will always override

variables from an @using namespace.




	@define<Type> <name>[= expression]

	Defines a variable in the local

namespace.




	@var [name =]<expression>

	Performs an expression or assigns a

variable to the result of an expression.







Table 9.39: Control Script operators







	@delay<time>

	Delays the execution of the rest of the script by a

specified amount.




	@cooldown<time>

	Disallows the executor to re-execute the script for a

specified amount of time. When used in functions,

terminates the calling script when the function is on

cooldown.




	@globalcooldown<time>

	Disallows all players to execute the script for a specified

amount of time. When used in functions, terminates

the calling script when the function is on cooldown.




	@cancel

	Cancels the interaction between player and the object

the script is bound to. Only has effect before any

@delay, @prompt, @command, @console or @bypass

lines.




	@return [expression]

	Stops the execution of the current script/function, and

optionally returns a value, if required.




	@fast

	By default, the @command, @bypass or @console script operators have

a one-tick delay (like @delay 1). @fast will remove that delay for all

subsequent command operators.




	@slow

	Re-adds the delay that was removed with @fast. Note that this

effect (@fast and @slow) only applies to the local execution

context - other functions called will be unaffected.







Table 9.40: Branching Script operators







	@if<expression>

	Conditionally evaluate the following section of the script if

the operand is (or evaluates to) true.




	@else

	Evaluate the following section of the script if the preceding

@if was false.




	@elseif<expression>

	Conditionally evaluate the following section of the script if

the preceding @if was false, and the operand is (or evaluates

to) true.




	@fi

	Ends a conditional section.






Table 9.41: Misc Script operators







	@undefined No operation.

	May sometimes appear on legacy scripts. Can be used

as a comment for complex lines or scripts.








Footnotes



            

          

      

      

    

  

    
      
          
            
  
Version History/Changelog


Contents


	Version History/Changelog


	2.4.7


	2.4.6


	2.4.5


	2.4.4


	2.4.3


	2.4.2


	2.4.1


	2.4.0


	2.3.4


	2.3.3


	2.3.2


	2.3.0


	2.2.2


	2.2.1


	2.2.0


	2.1.5


	2.1.4


	2.1.3


	2.1.2


	2.1.1


	2.1.0


	2.0







2.4.7

Additions


	
	Added new methods to the Entity type:
	
	Boolean addPassenger(Entity passenger)​


	Void ejectPassengers()​














2.4.6

Additions


	
	Disabled the following Player methods:
	
	Void setPlayerWeather(String weather)​


	Void resetPlayerWeather()


	Long getPlayerTime()​


	Long getPlayerTimeOffset()​


	Void setPlayerTime(Long time, Boolean serverRelative)​














2.4.5

Additions


	
	The Player type has received a number of new methods:
	
	String getClickedBlockFace()​


	String getTargetBlockFace(Int distance)​


	Block getTargetBlock(Int distance)​


	Entity getTargetEntity(Int distance)​


	Boolean hasGravity()​


	Void setGravity(Boolean gravity)​


	Boolean isGliding()​


	String getPlayerWeather()​


	Void setPlayerWeather(String weather)​


	Void resetPlayerWeather()


	Long getPlayerTime()​


	Long getPlayerTimeOffset()​


	Void setPlayerTime(Long time, Boolean serverRelative)​


	Void resetPlayerTime()​


	Boolean dropItem(Boolean dropAll)​














2.4.4

Additions


	Added some commands to the blacklist.


	Fixed walk/area/ground scripts triggering before a teleport has taken effect; the target-location script would trigger on the old coordinates.


	All world scripts now have an implicit 1-tick cooldown, fixing infinite recursion when teleporting into scripts.






2.4.3

Additions


	Added sum() and avg() to Int[], Long[], Float[], Double[].






2.4.2

Additions


	Scripts now trigger when teleporting into them.






2.4.1

Additions


	Commands /c setplayercp, /c setplayersub are deprecated (should not be used) in scripts.






2.4.0

Additions


	Player#canSee(Player) returns if the player can see the target player (i.e., /hide and /block cause it to fail).


	Player constructors will now return null instead of throwing an exception if they do not find a player.


	Added a new constructor for Player: Player(String name, Player visibleTo). It will return null if a player was found but is not visible to visibleTo.


	Player#invalidate() and Player#invalidateTime() have been removed.


	Replaced by getting a timer directly and invalidating / nullifying them.


	
	You can obtain timers:
	
	timer::getMapTimer(Player player, String mapcode)


	timer::getChallengeTimer(Player player, String challengecode)


	timer::getCustomTimer(Player player, String tag)


	timer::getSpecialTimer(Player player, String tag)










	You can construct custom timers by instantiating the timer::Timer type.


	Never store a Timer instance in a namespace variable. It will break on you silently. ALWAYS use timer::getCustomTimer().


	You can remove custom timers with timer::removeCustomTimer(Player player, String tag)


	You can format a time into a string using String timer::formatTime(Long time).


	Added namespace minr. It has a Map and a Challenge type, that allows you to get the ranks and times of players.


	/namespace functions and /type methods now have added colour for parsability.


	Added filtering in /namespace variables, /namespace functions, /type methods, /type fields.


	You can now filter the results of the above commands by adding additional search terms after the command. For example, /type methods Vector3[] value int will only return methods that cantain “value” and “int”.






2.3.4

Fixes
- Op messages containing {{}} will now only send the result to the executing op.



2.3.3

Fixes
- Fixed interact scripts triggering multiple times in rapid succession.



2.3.2

Fixes
- Fixed interact scripts on cauldrons or waterloggable blocks not triggering on right click.



2.3.0

Additions


	
	Added new generic functions on List. Generic means that they can take any Type within constraints. In the following T will be the base type of your list (i.e., String[] -> T = String).
	
	Void append(T value) appends a value to the List.


	Void add(T value, Int index) places a value at an index, shifting the elements at that index and higher one index up.


	T pop() removes the last element of the list and returns it.


	T remove(Int index) removes the element at index from the list and returns it.


	Boolean contains(T value) returns whether the list contains an element that equals value.


	Int find(T value) returns the first index that matches the value. Throws a ElementNotFoundException if the value is not in the list. (Tip: always use contains before find)










	
	Two functions have been added specifically for String[]:
	
	String concat() concatenates a list of Strings together: String[“hello”, “world”].concat() yields “helloworld”.


	String join(String delimiter) joins a list of string, inserting delimiter between each string: String[“hello”, “world”].join(” “) yields “hello world”.














2.2.2

Fixes


	Fixed /scripts copy and /scripts paste not working when pasting in a different world.






2.2.1

Additions


	Added Material type






2.2.0

Additions


	Overhauled scripts loading and internal structure.


	Added String player.getName()


	Added String player.getDisplayName()


	
	Added new built-in spatial types:
	
	Position(Double x, Double y, Double z, Float yaw, Float pitch, String world)


	Location(Double x, Double y, Double z, String world)


	Vector3(Double x, Double y, Double z)


	Vector2(Double x, Double z)


	BlockLocation(Int x, Int y, Int z, String world)


	BlockVector3(Int x, Int y, Int z)


	BlockVector2(Int x, Int z)


	Region(String id, String world, String type, X points, Boolean transient)


	These all have methods, too innumerable to mention here.










	Added Location player.getLocation(), Position player.getPosition() and BlockLocation block.getLocation().


	Added Player.teleport(Position destination) and Entity.teleport(Position destination).


	Added BlockLocation.set(String block)


	Overhauled scripts loading and internal structure.


	Added String player.getName()


	Added String player.getDisplayName()






2.1.5

Additions


	Added Int player.countItem(String id).


	Added Boolean util::executeAndQuerySuccess(String command) and Int util::executeAndQueryResult(String command).


	Added String util::randomUUID() to randomly generate an UUID.


	format::formatDate now uses a timezone of UTC, so you can use more formats.






2.1.4

Additions


	Scripts are no longer triggered while the player is in spectator mode.






2.1.3

Additions


	Added @fast and @slow script operators.


	By default, the @command, @bypass or @console script operators have a one-tick delay (like @delay 1).


	@fast will remove that delay for all subsequent command operators.


	@slow will re-add it.


	Having either one multiple times in a row without the other is legal.


	Note that this effect only applies to the local execution context - other functions called will be unaffected.


	Added player.getSpeedrunScore(). player.getGlobalPoints() is now deprecated.






2.1.2

Additions


	Added String Player.getBedLocationWorld(), which returns a String containing the world where the player has set their bed.


	Added String[] String.split(String separator), which splits the string based on the separator into a list of pieces around the separator. For example: “hi world”.split(” “) would yield: [“hi”, “world”].


	Added Double[] system::getTPS() which returns a list of size 3, containing the average TPS over the last 1 minute, 5 minutes and 15 minutes.






2.1.1

Additions


	Added the exponentiation operator ^.


	Added literals pi and π (both equal to 3.14159265358979323846)


	
	Added the following functions to the math namespace:
	
	sin(), cos(), tan()


	arcsin(), arccos(), arctan()


	radsin(), radcos(), radtan()


	radarcsin(), radarctan(), radarctan()


	rad()


	deg()










	Functions with the rad prefix take radians, all others take degrees.






2.1.0

Additions


	Added List type (with max size 1000) - if this is too limiting, we can increase it, but I feel this should allow for enough leeway while not spending too many server resources).


	For loops to iterate over list types. (Including a python-like range(Int inclusiveStart, Int exclusiveEnd)).


	Player indexing on relative variables.


	Whitespace will now be preserved when importing from Hastebin, and will be exported as well.


	When creating a script, the co-ordinates of the script will be displayed. If you accidentally misplace a script this will allow you to easily remove the script.


	Added Int floor(Double x) and Int ceil(Double x), which floor and ceiling a number respectively.


	Added sendMessage(String message) to send a raw message directly to a player.




Fixes:
- Issues with default vars & relatives.
- Minor bugfixes.



2.0

Note

The initial documentation for 2.0 was written by rickyboy320 and was copied here.

Additions

Namespaces

Grouping variables and functions so that variables with the same names over different
projects do not clash.

User Types

Players can define their own variable Types, including constructors, methods and fields.
This also supports the this keyword to select the current instance.

Qualifiers

To support strict variables and still support per-player variables, qualifiers were
introduced. The two available qualifiers currently are: relative and final.

Null

To support the absence of a value (due to failed computation or other), null is supported
as a substitute for a variable on unambiguous functions, or as the value of a variable.

Expressions

To allow multiple operations on one line (and not separate lines as was previously the case
in MSC 1.0), full expression support was added to provide easier operations, function
calls, assignment and more.

Functions

Functions have been added to greatly favor reuse of scripts. Functions can take input
and can output values, and can be called from any context.

Hastebin

To support easier script writing, MSC 2.0 supports Hastebin. This allows the user to
write scripts in a notepad-like environment, and import the scripts to the server from
there. Exports are also supported.

Var Script Operators

Variable related script operators have been added: @var supports any assignment or
simply an expression. @define supports variable definitions within the local namespace.
@using supports switching namespaces for the rest of the script.

Script Metadata

In order for the user to trace back who the script originally belongs to, how many times
the script has been executed and more metadata, scripts now store metadata to keep
track of sometimes quintessential information while maintaining maps.

Modifications

Variable Typing

Variables are now typed. MSC 2.0 supports built-in types: String, Int, Long, Float,
Double, Player, Block, Entity. Variables are strictly typed, and a String can no longer
be implicitly used as an Int, as was possible before.

Literals

Literals have been modified to support the new built-in types, and automatically change
to the corresponding type. Previously everything was parsed as a String.

@chatscript

Chatscript now only takes a function call as argument, instead of the previously sup-
ported script lines.


Footnotes



            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          MSC 2.0
        


        		
          Tutorial
          
            		
              What is MSC?
            


            		
              Script types
            


            		
              Script operators
            


            		
              Script actions
            


            		
              Paste.minr.org
            


            		
              Creating a dialogue script
            


            		
              More advanced dialogue
            


            		
              Variables
            


            		
              Qualifiers
            


            		
              Writing a script that uses local variables
            


            		
              Double curly braces
            


            		
              Namespaces
            


            		
              Branching Operators
            


            		
              Writing a simple counting script
            


            		
              Writing a simple script to check if the player already clicked a block
            


            		
              Chat Operators
            


            		
              Creating an answer prompt
            


          


        


        		
          Introduction
          
            		
              Introduction
            


            		
              Structure
            


            		
              Notation
            


          


        


        		
          Namespaces
          
            		
              The Namespace
            


            		
              Using Namespaces
            


            		
              Best Practice
            


          


        


        		
          Variables
          
            		
              Types
            


            		
              Built-in Types
            


            		
              Literals
            


            		
              Qualifiers
            


            		
              3.4 Usage
            


            		
              Null
            


          


        


        		
          Lists
          
            		
              Constructors
            


            		
              Indexing
            


            		
              Methods
            


            		
              Namespace:
            


            		
              For Loops
            


            		
              Player Indexing
            


          


        


        		
          Expressions
          
            		
              The Expression
            


            		
              Execution Order
            


            		
              Short Circuit
            


            		
              Syntax
              
                		
                  Syntax
                


                		
                  Define
                


                		
                  Var
                


                		
                  String Formatting
                


                		
                  Expression
                


              


            


          


        


        		
          Scripts
          
            		
              Script Operators
              
                		
                  Script Operators
                


                		
                  Command Operators
                


                		
                  Branching Operators
                


                		
                  Control Operators
                


                		
                  Variable Operators
                


                		
                  Chat Operators
                


              


            


            		
              Script Anatomy
              
                		
                  Anatomy of Scripts
                


                		
                  Script Types
                


                		
                  Lines
                


                		
                  Parameters
                


              


            


            		
              Script Commands
              
                		
                  Commands
                


                		
                  Action
                


                		
                  Type
                


              


            


            		
              Paste.minr.org
              
                		
                  Paste.minr.org
                


              


            


          


        


        		
          Functions
          
            		
              The Function
              
                		
                  The Function
                


                		
                  Parameters
                


                		
                  Return Type
                


              


            


            		
              Function Syntax
              
                		
                  Syntax
                


                		
                  Definition
                


                		
                  Function Calls
                


              


            


          


        


        		
          User defined Types
          
            		
              User defined Types
            


            		
              Fields
            


            		
              Methods
            


            		
              This keyword
            


            		
              Constructors
            


          


        


        		
          Appendix
          
            		
              Built-in Namespaces
              
                		
                  Built-in Namespaces
                


                		
                  system
                


                		
                  math
                


                		
                  util
                


                		
                  format
                


                		
                  timer
                


              


            


            		
              Built-in Types
              
                		
                  Built-in Types
                


                		
                  String
                


                		
                  Constructors
                


                		
                  Operators
                


                		
                  Int & Long
                


                		
                  Float & Double
                


                		
                  Boolean
                


                		
                  Player
                


                		
                  Entity
                


                		
                  Block
                


                		
                  Item
                


                		
                  Spatial Types
                


                		
                  Location
                


                		
                  BlockLocation
                


                		
                  Position
                


                		
                  Vector3, BlockVector3, Vector2 and BlockVector2
                


                		
                  Region
                


              


            


            		
              Syntax
              
                		
                  Syntax
                


                		
                  Define
                


                		
                  Var
                


                		
                  String Formatting
                


                		
                  Expression
                


                		
                  Time
                


              


            


            		
              Commands
              
                		
                  Namespace
                


                		
                  Variable
                


                		
                  Function
                


                		
                  User Types
                


                		
                  Fields
                


                		
                  Methods
                


                		
                  Constructors
                


                		
                  Script
                


              


            


            		
              Scripts
              
                		
                  Scripts
                


                		
                  Script Actions
                


                		
                  Script Types
                


                		
                  Script Operators
                


              


            


          


        


        		
          Version History/Changelog
        


        		
          2.4.7
        


        		
          2.4.6
        


        		
          2.4.5
        


        		
          2.4.4
        


        		
          2.4.3
        


        		
          2.4.2
        


        		
          2.4.1
        


        		
          2.4.0
        


        		
          2.3.4
        


        		
          2.3.3
        


        		
          2.3.2
        


        		
          2.3.0
        


        		
          2.2.2
        


        		
          2.2.1
        


        		
          2.2.0
        


        		
          2.1.5
        


        		
          2.1.4
        


        		
          2.1.3
        


        		
          2.1.2
        


        		
          2.1.1
        


        		
          2.1.0
        


        		
          2.0
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





